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CHAPTER 1 
 

Section 1.1 
 
1.  

a. Los Angeles Times, Oberlin Tribune, Gainesville Sun, Washington Post 
 
b. Duke Energy, Clorox, Seagate, Neiman Marcus 

 
c. Vince Correa, Catherine Miller, Michael Cutler, Ken Lee 

 
d. 2.97, 3.56, 2.20, 2.97 

 
 
2.  

a. 29.1 yd, 28.3 yd, 24.7 yd, 31.0 yd 
 

b. 432 pp, 196 pp, 184 pp, 321 pp 
 

c. 2.1, 4.0, 3.2, 6.3 
 

d. 0.07 g, 1.58 g, 7.1 g, 27.2 g 
 
 
3.  

a. How likely is it that more than half of the sampled computers will need or have needed 
warranty service? What is the expected number among the 100 that need warranty 
service? How likely is it that the number needing warranty service will exceed the 
expected number by more than 10? 

 
b. Suppose that 15 of the 100 sampled needed warranty service. How confident can we be 

that the proportion of all such computers needing warranty service is between .08 and 
.22? Does the sample provide compelling evidence for concluding that more than 10% of 
all such computers need warranty service? 
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4.  
a. Concrete populations: all living U.S. Citizens, all mutual funds marketed in the U.S., all 

books published in 1980  
Hypothetical populations:  all grade point averages for University of California 
undergraduates during the next academic year, page lengths for all books published 
during the next calendar year, batting averages for all major league players during the 
next baseball season 
 

b. (Concrete) Probability: In a sample of 5 mutual funds, what is the chance that all 5 have 
rates of return which exceeded 10% last year? 
Statistics: If previous year rates-of-return for 5 mutual funds were 9.6, 14.5, 8.3, 9.9 and 
10.2, can we conclude that the average rate for all funds was below 10%? 
(Hypothetical) Probability: In a sample of 10 books to be published next year, how likely 
is it that the average number of pages for the 10 is between 200 and 250? 
Statistics: If the sample average number of pages for 10 books is 227, can we be highly 
confident that the average for all books is between 200 and 245? 

 
 

5.  
a. No. All students taking a large statistics course who participate in an SI program of this 

sort. 
 
b. The advantage to randomly allocating students to the two groups is that the two groups 

should then be fairly comparable before the study.  If the two groups perform differently 
in the class, we might attribute this to the treatments (SI and control). If it were left to 
students to choose, stronger or more dedicated students might gravitate toward SI, 
confounding the results. 

 
c. If all students were put in the treatment group, there would be no firm basis for assessing 

the effectiveness of SI (nothing to which the SI scores could reasonably be compared). 
 
 
6. One could take a simple random sample of students from all students in the California State 

University system and ask each student in the sample to report the distance form their 
hometown to campus.  Alternatively, the sample could be generated by taking a stratified 
random sample by taking a simple random sample from each of the 23 campuses and again 
asking each student in the sample to report the distance from their hometown to campus.  
Certain problems might arise with self reporting of distances, such as recording error or poor 
recall.  This study is enumerative because there exists a finite, identifiable population of 
objects from which to sample. 

 
 
7. One could generate a simple random sample of all single-family homes in the city, or a 

stratified random sample by taking a simple random sample from each of the 10 district 
neighborhoods.  From each of the selected homes, values of all desired variables would be 
determined.  This would be an enumerative study because there exists a finite, identifiable 
population of objects from which to sample. 

 



Chapter 1:  Overview and Descriptive Statistics 

 3 

8.  
a. Number observations equal 2 x 2 x 2 = 8 
 
b. This could be called an analytic study because the data would be collected on an existing 

process. There is no sampling frame. 
  
9.  

a. There could be several explanations for the variability of the measurements.  Among 
them could be measurement error (due to mechanical or technical changes across 
measurements), recording error, differences in weather conditions at time of 
measurements, etc. 

 
b. No, because there is no sampling frame. 

 
 

Section 1.2 
 
10.  

a.  
     

5 9  
6 33588  
7 00234677889 
8 127  
9 077 stem: ones 

10 7 leaf: tenths 
11 368  

 
A representative strength for these beams is around 7.8 MPa, but there is a reasonably 
large amount of variation around that representative value.  
 
(What constitutes large or small variation usually depends on context, but variation is 
usually considered large when the range of the data – the difference between the largest 
and smallest value – is comparable to a representative value. Here, the range is 11.8 – 5.9 
= 5.9 MPa, which is similar in size to the representative value of 7.8 MPa. So, most 
researchers would call this a large amount of variation.) 

 
b. The data display is not perfectly symmetric around some middle/representative value.  

There is some positive skewness in this data. 
 
c. Outliers are data points that appear to be very different from the pack.  Looking at the 

stem-and-leaf display in part (a), there appear to be no outliers in this data.  (A later 
section gives a more precise definition of what constitutes an outlier.) 

 
d. From the stem-and-leaf display in part (a), there are 4 values greater than 10.  Therefore, 

the proportion of data values that exceed 10 is 4/27 = .148, or, about 15%. 
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11.  
3L 1  
3H 56678  
4L 000112222234  
4H 5667888 stem: tenths 
5L 144 leaf : hundredths 
5H 58  
6L 2  
6H 6678  
7L   
7H 5  

 
The stem-and-leaf display shows that .45 is a good representative value for the data.  In 
addition, the display is not symmetric and appears to be positively skewed.  The range of the 
data is .75 – .31 = .44, which is comparable to the typical value of .45. This constitutes a 
reasonably large amount of variation in the data.  The data value .75 is a possible outlier.  

 
 
12. The sample size for this data set is n = 5 + 15 + 27 + 34 + 22 + 14 + 7 + 2 + 4 + 1 = 131. 
 

a. The first four intervals correspond to observations less than 5, so the proportion of values 
less than 5 is (5 + 15 + 27 + 34)/131 = 81/131 = .618. 
 

b. The last four intervals correspond to observations at least 6, so the proportion of values at 
least 6 is (7 + 2 + 4 + 1)/131 = 14/131 = .107. 
 

c. & d. The relative (percent) frequency and density histograms appear below. The 
distribution of CeO2 sizes is not symmetric, but rather positively skewed. Notice that the 
relative frequency and density histograms are essentially identical, other than the vertical 
axis labeling, because the bin widths are all the same. 
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13.  
a.  
    

12 2 stem: tens 
12 445 leaf: ones  
12 6667777   
12 889999   
13 00011111111   
13 2222222222333333333333333   
13 44444444444444444455555555555555555555 
13 6666666666667777777777   
13 888888888888999999   
14 0000001111   
14 2333333   
14 444   
14 77   

 
The observations are highly concentrated at around 134 or 135, where the display 
suggests the typical value falls. 

 
b.  
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The histogram of ultimate strengths is symmetric and unimodal, with the point of 
symmetry at approximately 135 ksi. There is a moderate amount of variation, and there 
are no gaps or outliers in the distribution. 
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14.  
a.  

2 23  stem: 1.0 
3 2344567789  leaf: .10 
4 01356889   
5 00001114455666789  
6 0000122223344456667789999 
7 00012233455555668  
8 02233448   
9 012233335666788  

10 2344455688   
11 2335999   
12 37   
13 8   
14 36   
15 0035   
16    
17    
18 9   

 
   

b. A representative is around 7.0. 
 
c. The data exhibit a moderate amount of variation (this is subjective). 

 
d. No, the data is skewed to the right, or positively skewed. 
 
e. The value 18.9 appears to be an outlier, being more than two stem units from the previous 

value. 
 

 
15.  

American  French 
 8 1 

755543211000 9 00234566 
9432 10 2356 
6630 11 1369 

850 12 223558 
8 13 7 

 14  
 15 8 

2 16  
 
American movie times are unimodal strongly positively skewed, while French movie times 
appear to be bimodal. A typical American movie runs about 95 minutes, while French movies 
are typically either around 95 minutes or around 125 minutes. American movies are generally 
shorter than French movies and are less variable in length. Finally, both American and French 
movies occasionally run very long (outliers at 162 minutes and 158 minutes, respectively, in 
the samples). 
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16.  
a.  

Beams  Cylinders  
9 5 8  

88533 6 16  
98877643200 7 012488  

721 8 13359 stem: ones 
770 9 278 leaf: tenths 

7 10   
863 11 2  

 12 6  
 13   
 14 1  

 
The data appears to be slightly skewed to the right, or positively skewed.  The value of 
14.1 MPa appears to be an outlier.  Three out of the twenty, or 15%, of the observations 
exceed 10 MPa. 
 

b. The majority of observations are between 5 and 9 MPa for both beams and cylinders, 
with the modal class being 7.0-7.9 MPa.  The observations for cylinders are more 
variable, or spread out, and the maximum value of the cylinder observations is higher. 

 
c.  

 
    . .  .  :..  : .: . . .   :         .        .         . 

          -+---------+---------+---------+---------+---------+----- 
          6.0       7.5       9.0      10.5      12.0      13.5 

Cylinder strength (MPa) 
 
17. The sample size for this data set is n = 7 + 20 + 26 + … + 3 + 2 = 108.  

a. “At most five bidders” means 2, 3, 4, or 5 bidders. The proportion of contracts that 
involved at most 5 bidders is (7 + 20 + 26 + 16)/108 = 69/108 = .639.  
Similarly, the proportion of contracts that involved at least 5 bidders (5 through 11) is 
equal to (16 + 11 + 9 + 6 + 8 + 3 + 2)/108 = 55/108 = .509. 

 
b. The number of contracts with between 5 and 10 bidders, inclusive, is 16 + 11 + 9 + 6 + 8 

+ 3 = 53, so the proportion is 53/108 = .491. “Strictly” between 5 and 10 means 6, 7, 8, or 
9 bidders, for a proportion equal to (11 + 9 + 6 + 8)/108 = 34/108 = .315.  

 
c. The distribution of number of bidders is positively skewed, ranging from 2 to 11 bidders, 

with a typical value of around 4-5 bidders.  
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18.  

a. The most interesting feature of the histogram is the heavy presence of three very large 
outliers (21, 24, and 32 directors). Absent these three corporations, the distribution of 
number of directors would be roughly symmetric with a typical value of around 9. 
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Note: One way to have Minitab automatically construct a histogram from grouped data 
such as this is to use Minitab’s ability to enter multiple copies of the same number by 
typing, for example, 42(9) to enter 42 copies of the number 9.  The frequency data in this 
exercise was entered using the following Minitab commands: 
MTB > set c1 
DATA> 3(4) 12(5) 13(6) 25(7) 24(8) 42(9) 23(10) 19(11) 16(12) 
11(13) 5(14) 4(15) 1(16) 3(17) 1(21) 1(24) 1(32) 
DATA> end  

 
b. The accompanying frequency distribution is nearly identical to the one in the textbook, 

except that the three largest values are compacted into the “≥ 18” category. If this were 
the originally-presented information, we could not create a histogram, because we would 
not know the upper boundary for the rectangle corresponding to the “≥ 18” category. 
 
No. dir. 4 5 6 7 8 9 10 11 
Freq. 3 12 13 25 24 42 23 19 
         
No dir. 12 13 14 15 16 17 ≥ 18  
Freq. 16 11 5 4 1 3 3  
 

 
c. The sample size is 3 + 12 + … + 3 + 1 + 1 + 1 = 204. So, the proportion of these 

corporations that have at most 10 directors is (3 + 12 + 13 + 25 + 24 + 42 + 23)/204 = 
142/204 = .696. 

 
d. Similarly, the proportion of these corporations with more than 15 directors is (1 + 3 + 1 + 

1 + 1)/204 = 7/204 = .034.  
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19.  
a. From this frequency distribution, the proportion of wafers that contained at least one 

particle is (100-1)/100 = .99, or 99%.  Note that it is much easier to subtract 1 (which is 
the number of wafers that contain 0 particles) from 100 than it would be to add all the 
frequencies for 1, 2, 3,… particles.  In a similar fashion, the proportion containing at least 
5 particles is (100 - 1-2-3-12-11)/100 = 71/100 = .71, or, 71%. 

 
b. The proportion containing between 5 and 10 particles is (15+18+10+12+4+5)/100 = 

64/100 = .64, or 64%.  The proportion that contain strictly between 5 and 10 (meaning 
strictly more than 5 and strictly less than 10) is (18+10+12+4)/100 = 44/100 = .44, or 
44%. 

 
c. The following histogram was constructed using Minitab.  The histogram is almost 

symmetric and unimodal; however, the distribution has a few smaller modes and has a 
very slight positive skew.  
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20.  

a. The following stem-and-leaf display was constructed: 
 

0 123334555599   
1 00122234688 stem: thousands 
2 1112344477 leaf: hundreds  
3 0113338   
4 37   
5 23778   

 
A typical data value is somewhere in the low 2000’s.  The display is bimodal (the stem at 
5 would be considered a mode, the stem at 0 another) and has a positive skew. 
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b. A histogram of this data, using classes boundaries of 0, 1000, 2000, …, 6000 is shown 
below.  The proportion of subdivisions with total length less than 2000 is (12+11)/47 = 
.489, or 48.9%.  Between 2000 and 4000, the proportion is (10+7)/47 = .362, or 36.2%.   
The histogram shows the same general shape as depicted by the stem-and-leaf in part (a). 
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21.  

a. A histogram of the y data appears below.  From this histogram, the number of 
subdivisions having no cul-de-sacs (i.e., y = 0) is 17/47 = .362, or 36.2%.  The proportion 
having at least one cul-de-sac (y ≥ 1) is (47 – 17)/47 = 30/47 = .638, or 63.8%.  Note that 
subtracting the number of cul-de-sacs with y = 0 from the total, 47, is an easy way to find 
the number of subdivisions with y ≥ 1. 
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b. A histogram of the z data appears below.  From this histogram, the number of 
subdivisions with at most 5 intersections (i.e., z ≤ 5) is 42/47 = .894, or 89.4%.  The 
proportion having fewer than 5 intersections (i.e., z < 5) is 39/47 = .830, or 83.0%. 
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22. A very large percentage of the data values are greater than 0, which indicates that most, but 

not all, runners do slow down at the end of the race.   The histogram is also positively skewed, 
which means that some runners slow down a lot compared to the others.  A typical value for 
this data would be in the neighborhood of 200 seconds.  The proportion of the runners who 
ran the last 5 km faster than they did the first 5 km is very small, about 1% or so. 
 

23. Note: since the class intervals have unequal length, we must use a density scale. 
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The distribution of tantrum durations is unimodal and heavily positively skewed. Most 
tantrums last between 0 and 11 minutes, but a few last more than half an hour! With such 
heavy skewness, it’s difficult to give a representative value. 
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24. The distribution of shear strengths is roughly symmetric and bell-shaped, centered at about 

5000 lbs and ranging from about 4000 to 6000 lbs. 
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25. The transformation creates a much more symmetric, mound-shaped histogram. 

 
Histogram of original data: 
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Histogram of transformed data: 
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26.  

a. Yes: the proportion of sampled angles smaller than 15° is .177 + .166 + .175 = .518. 
 

b. The proportion of sampled angles at least 30° is .078 + .044 + .030 = .152. 
 
c. The proportion of angles between 10° and 25° is roughly .175 + .136 + (.194)/2 = .408. 

 
d. The distribution of misorientation angles is heavily positively skewed. Though angles can 

range from 0° to 90°, nearly 85% of all angles are less than 30°. Without more precise 
information, we cannot tell if the data contain outliers. 
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27.  

a. The endpoints of the class intervals overlap.  For example, the value 50 falls in both of 
the intervals 0–50 and 50–100. 
 

b. The lifetime distribution is positively skewed. A representative value is around 100. 
There is a great deal of variability in lifetimes and several possible candidates for 
outliers. 

 
 

Class Interval Frequency Relative Frequency 
0–< 50 9 0.18 

50–<100 19 0.38 
100–<150 11 0.22 
150–<200 4 0.08 
200–<250 2 0.04 
250–<300 2 0.04 
300–<350 1 0.02 
350–<400 1 0.02 
400–<450 0 0.00 
450–<500 0 0.00 
500–<550 1 0.02 

 50 1.00 
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c. There is much more symmetry in the distribution of the transformed values than in the 

values themselves, and less variability. There are no longer gaps or obvious outliers. 
 

Class Interval Frequency Relative Frequency 
2.25–<2.75 2 0.04 
2.75–<3.25 2 0.04 
3.25–<3.75 3 0.06 
3.75–<4.25 8 0.16 
4.25–<4.75 18 0.36 
4.75–<5.25 10 0.20 
5.25–<5.75 4 0.08 
5.75–<6.25 3 0.06 
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d. The proportion of lifetime observations in this sample that are less than 100 is .18 + .38 = 

.56, and the proportion that is at least 200 is .04 + .04 + .02 + .02 + .02 = .14. 
 
 
28. The sample size for this data set is n = 804. 

a. (5 + 11 + 13 + 30 + 46)/804 = 105/804 = .131. 
 

b. (73 + 38 + 19 + 11)/804 = 141/804 = .175. 
 

c. The number of trials resulting in deposited energy of 3.6 mJ or more is 126 + 92 + 73 + 
38 + 19 + 11 = 359. Additionally, 141 trials resulted in deposited energy within the 
interval 3.4-<3.6. If we assume that roughly half of these were in the interval 3.5-<3.6 
(since 3.5 is the midpoint), then our estimated frequency is 359 + (141)/2 = 429.5, for a 
rough proportion equal to 429.5/804 = .534. 
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d. The deposited energy distribution is roughly symmetric or perhaps slightly negatively 
skewed (there is a somewhat long left tail). Notice that the histogram must be made on a 
density scale, since the interval widths are not all the same. 
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29.  
Physical 
Activity 

Frequency Relative  
Frequency 

A 28 .28 
B  19 .19 
C 18 .18 
D 17 .17 
E 9 .09 
F 9 .09 
 100 1.00 
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30.  
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31.  
 

Class Frequency Cum. Freq. Cum. Rel. Freq. 
0.0–<4.0 2 2 0.050 
4.0–<8.0 14 16 0.400 

8.0–<12.0 11 27 0.675 
12.0–<16.0 8 35 0.875 
16.0–<20.0 4 39 0.975 
20.0–<24.0 0 39 0.975 
24.0–<28.0 1 40 1.000 

 
 
 
32.  

a. Cumulative percents must be restored to relative frequencies. Then the histogram may be 
constructed (see below). The relative frequency distribution is almost unimodal and 
exhibits a large positive skew.  The typical middle value is somewhere between 400 and 
450, although the skewness makes it difficult to pinpoint more exactly than this. 

 
           Class    Rel. Freq.                 Class            Rel. Freq. 

     0–< 150   .193     900–<1050    .019 
 150–< 300    .183   1050–<1200   .029 
 300–< 450   .251   1200–<1350   .005 
 450–< 600   .148   1350–<1500   .004 
 600–< 750    .097   1500–<1650    .001 
 750–< 900   .066   1650–<1800    .002 

1800–<1950    .002 
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b. The proportion of the fire loads less than 600 is .193 + .183 + .251 + .148 = .775.  The 
proportion of loads that are at least 1200 is .005 + .004 + .001 + .002 + .002 = .014. 

 
c. The proportion of loads between 600 and 1200 is 1 – .775 – .014 = .211. 
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Section 1.3 
 
33.  

a. Using software, x = 640.5 ($640,500) and x = 582.5 ($582,500). The average sale price 
for a home in this sample was $640,500. Half the sales were for less than $582,500, while 
half were for more than $582,500.  

 
b. Changing that one value lowers the sample mean to 610.5 ($610,500) but has no effect on 

the sample median. 
 

c. After removing the two largest and two smallest values, (20)trx = 591.2 ($591,200). 
 

d. A 10% trimmed mean from removing just the highest and lowest values is (10)trx = 596.3. 
To form a 15% trimmed mean, take the average of the 10% and 20% trimmed means to 
get (15)trx = (591.2 + 596.3)/2 = 593.75 ($593,750). 

 
 
34.  

a. For urban homes, x  = 21.55 EU/mg; for farm homes, x  = 8.56 EU/mg. The average 
endotoxin concentration in urban homes is more than double the average endotoxin 
concentration in farm homes. 

 
b. For urban homes, x~ = 17.00 EU/mg; for farm homes, x~ = 8.90 EU/mg. The median 

endotoxin concentration in urban homes is nearly double the median endotoxin 
concentration in farm homes. The mean and median endotoxin concentration for urban 
homes are so different because the few large values, especially the extreme value of 80.0, 
raise the mean but not the median. 

 
c. For urban homes, deleting the smallest (x = 4.0) and largest (x = 80.0) values gives a 

trimmed mean of trx  = 153/9 = 17 EU/mg.  The corresponding trimming percentage is 
100(1/11) ≈ 9.1%.  The trimmed mean is less than the mean of the entire sample, since 
the sample was positively skewed. Coincidentally, the median and trimmed mean are 
equal. 

 
For farm homes, deleting the smallest (x = 0.3) and largest (x = 21.0) values gives a 
trimmed mean of trx  = 107.1/13 = 8.24 EU/mg.  The corresponding trimming percentage 
is 100(1/15) ≈ 6.7%. The trimmed mean is below, though not far from, the mean and 
median of the entire sample. 

 
35. The sample size is n = 15. 

a. The sample mean is x = 18.55/15 = 1.237 µg/g and the sample median is x = the 8th 
ordered value = .56 µg/g. These values are very different due to the heavy positive 
skewness in the data.  
 

b. A 1/15 trimmed mean is obtained by removing the largest and smallest values and 
averaging the remaining 13 numbers: (.22 + … + 3.07)/13 = 1.162. Similarly, a 2/15 
trimmed mean is the average of the middle 11 values: (.25 + … + 2.25)/11 = 1.074. Since 
the average of 1/15 and 2/15 is .1 (10%), a 10% trimmed mean is given by the midpoint 
of these two trimmed means: (1.162 + 1.074)/2 = 1.118 µg/g. 
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c. The median of the data set will remain .56 so long as that’s the 8th ordered observation. 

Hence, the value .20 could be increased to as high as .56 without changing the fact that 
the 8th ordered observation is .56. Equivalently, .20 could be increased by as much as .36 
without affecting the value of the sample median.  

 
36.  

a. A stem-and leaf display of this data appears below: 

 
32 55 stem: ones 
33 49 leaf: tenths 
34   
35 6699  
36 34469  
37 03345  
38 9  
39 2347  
40 23  
41   
42 4  

 
The display is reasonably symmetric, so the mean and median will be close. 
 

b. The sample mean is x = 9638/26 = 370.7 sec, while the sample median is x~ = 
(369+370)/2 = 369.50 sec. 

 
c. The largest value (currently 424) could be increased by any amount.  Doing so will not 

change the fact that the middle two observations are 369 and 370, and hence, the median 
will not change.  However, the value x = 424 cannot be changed to a number less than 
370 (a change of 424 – 370 = 54) since that will change the middle two values. 

 
d. Expressed in minutes, the mean is (370.7 sec)/(60 sec) = 6.18 min, while the median is 

6.16 min. 
 
 
37. 01.12=x , 35.11~ =x , 46.11)10( =trx .  The median or the trimmed mean would be better 

choices than the mean because of the outlier 21.9. 
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38.  

a. The reported values are (in increasing order) 110, 115, 120, 120, 125, 130, 130, 135, and 
140. Thus the median of the reported values is 125. 

 
b. 127.6 is reported as 130, so the median is now 130, a very substantial change. When there 

is rounding or grouping, the median can be highly sensitive to small change. 
 
 
39.  

a. 475.16=Σ ix  so 0297.1
16
475.16

==x ; 009.1
2

)011.1007.1(~ =
+

=x  

 
b. 1.394 can be decreased until it reaches 1.011 (i.e. by 1.394 – 1.011 = 0.383), the largest 

of the 2 middle values. If it is decreased by more than 0.383, the median will change. 
 
 
40. 8.60~ =x , (25) 59.3083trx = , 3475.58)10( =trx , 54.58=x . All four measures of center have 

about the same value. 
 
 
41.  

a. x/n = 7/10 = .7 
 
b. 70.=x = the sample proportion of successes 
 
c. To have x/n equal .80 requires x/25 = .80 or x = (.80)(25) = 20. There are 7 successes (S) 

already, so another 20 – 7 = 13 would be required.  
 
42.  

a. cx
n
nc

n
x

n
cx

n
y

y iii +=+
Σ

=
+Σ

=
Σ

=
)(

 

=y~ the median of =+++ ),...,,( 21 cxcxcx n median of 

cxcxxx n +=+ ~),...,,( 21  
 

b. xc
n
xc

n
cx

n
y

y iii =
Σ

=
⋅Σ

=
Σ

=
)(

 

=y~ the median of ),...,,( 21 ncxcxcx 1 2the median of ( , ,..., )nc x x x cx= ⋅ =   
 
 
43. The median and certain trimmed means can be calculated, while the mean cannot — the exact 

values of the “100+” observations are required to calculate the mean. x = 0.68
2

)7957(
=

+ , 

(20)trx = 66.2, (30)trx = 67.5. 
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Section 1.4 
 
44.  

a. The maximum and minimum values are 182.6 and 180.3, respectively, so the range is 
182.6 – 180.3 = 2.3°C. 

 
b. Note: If we apply the hint and subtract 180 from each observation, the mean will be 1.41, 

and the middle two columns will not change. The sum and sum of squares will change, 
but those effects will cancel and the answer below will stay the same. 

ix  ( )ix x−  2( )ix x−  2
ix  

180.5 –0.90833 0.82507 32580.3 
181.7 0.29167 0.08507 33014.9 
180.9 –0.50833 0.25840 32724.8 
181.6 0.19167 0.03674 32978.6 
182.6 1.19167 1.42007 33342.8 
181.6 0.19167 0.03674 32978.6 
181.3 –0.10833 0.01174 32869.7 
182.1 0.69167 0.47840 33160.4 
182.1 0.69167 0.47840 33160.4 
180.3 –1.10833 1.22840 32508.1 
181.7 0.29167 0.08507 33014.9 
180.5 –0.90833 0.82507 32580.3 

sums:          2176.9 
x  = 181.41 

0 
 

5.769167 
 

394913.6 
 

 
s2 = 

1
2( / )) ( 1n

i i xx n
=

− −∑  = 5.769167/(12 – 1) = 0.52447. 
 
c. 0.52447s = = 0.724. 
 

d. 
2 2 2

2 ( ) / 394913.6 (2176.9) /12 0.52447
1 11

x x ns
n

Σ − Σ −
= = =

−
.  

 
 
45.  

a. x = 115.58.  The deviations from the mean are 116.4 – 115.58 = .82, 115.9 – 115.58 = 
.32, 114.6 –115.58 = –.98, 115.2 – 115.58 = –.38, and 115.8 – 115.58 = .22. Notice that 
the deviations from the mean sum to zero, as they should. 

 
b. s2 = [(.82)2 + (.32)2 + (-.98)2 + (-.38)2 + (.22)2]/(5 – 1) = 1.928/4 = .482, so s = .694. 

 
c. 2

ixΣ   = 66795.61, so s2 = Sxx/(n – 1) = ( )2 2)( / / ( 1)i i nx x n−Σ Σ − =                                   
(66795.61 –(577.9)2 /5)/4 = 1.928/4 = .482. 

d. The new sample values are: 16.4  15.9  14.6  15.2  15.8.  While the new mean is 15.58, 
all the deviations are the same as in part (a), and the variance of the transformed data is 
identical to that of part (b). 
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46.  

a. Since all three distributions are somewhat skewed and two contain outliers (see d), 
medians are the more appropriate central measures. The medians are 
Cooler: 1.760°C Control: 1.900°C  Warmer: 2.305°C  
The median difference between air and soil temperature increases as the conditions of the 
minichambers transition from cooler to warmer (1.76 < 1.9 < 2.305). 

 
b. With the aid of software, the standard deviations are 

Cooler: 0.401°C Control: 0.531°C  Warmer: 0.778°C 
For the 15 observations under the “cooler” conditions, the typical deviation between an 
observed temperature difference and the mean temperature difference (1.760°C) is 
roughly 0.4°C. A similar interpretation applies to the other two standard deviations. 
We see that, according to the standard deviations, variability increases as the conditions 
of the minichambers transition from cooler to warmer (0.401 < 0.531 < 0.778). 
  

c. Apply the definitions of lower fourth, upper fourth, and fourth spread to the sorted data 
within each condition. 
Cooler: lower fourth = (1.43 + 1.57)/2 = 1.50, upper fourth = (1.88 + 1.90)/2 = 1.89,  
fs = 1.89 – 1.50 = 0.39°C 
Control: lower fourth = (1.52 + 1.78)/2 = 1.65, upper fourth = (2.00 + 2.03)/2 = 2.015,  
fs = 2.015 – 1.65 = 0.365°C 
Warmer: lower fourth = 1.91, upper fourth = 2.60,  
fs = 2.60 – 1.91 = 0.69°C 
The fourth spreads do not communicate the same message as the standard deviations did. 
The fourth spreads indicate that variability is quite similar under the cooler and control 
settings, while variability is much larger under the warmer setting. The disparity between 
the results of b and c can be partly attributed to the skewness and outliers in the data, 
which unduly affect the standard deviations. 
 

d. As noted earlier, the temperature difference distributions are negatively skewed under all 
three conditions. The control and warmer data sets each have a single outlier. The 
boxplots confirm that median temperature difference increases as we transition from 
cooler to warmer, that cooler and control variability are similar, and that variability under 
the warmer condition is quite a bit larger. 
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47.  

a. From software, x  = 14.7% and x = 14.88%. The sample average alcohol content of 
these 10 wines was 14.88%. Half the wines have alcohol content below 14.7% and half 
are above 14.7% alcohol. 
 

b. Working long-hand, 2( )ix xΣ −  = (14.8 – 14.88)2 + … + (15.0 – 14.88)2 = 7.536. The 
sample variance equals s2 = 2( )ix xΣ −  = 7.536/(10 – 1) = 0.837. 
  

c. Subtracting 13 from each value will not affect the variance. The 10 new observations are 
1.8, 1.5, 3.1, 1.2, 2.9, 0.7, 3.2, 1.6, 0.8, and 2.0. The sum and sum of squares of these 10 
new numbers are iyΣ  = 18.8 and 2

iyΣ = 42.88. Using the sample variance shortcut, we 
obtain s2 = [42.88 – (18.8)2/10]/(10 – 1) = 7.536/9 = 0.837 again. 

 
48.  

a. Using the sums provided for urban homes, Sxx = 10,079 – (237.0)2/11 = 4972.73, so s = 

111
73.4972

−
= 22.3 EU/mg. Similarly for farm homes, Sxx = 518.836 and s = 6.09 EU/mg. 

The endotoxin concentration in an urban home “typically” deviates from the average of 
21.55 by about 22.3 EU/mg. The endotoxin concentration in a farm home “typically” 
deviates from the average of 8.56 by about 6.09 EU/mg. (These interpretations are very 
loose, especially since the distributions are not symmetric.) In any case, the variability in 
endotoxin concentration is far greater in urban homes than in farm homes. 

 
b. The upper and lower fourths of the urban data are 28.0 and 5.5, respectively, for a fourth 

spread of 22.5 EU/mg. The upper and lower fourths of the farm data are 10.1 and 4, 
respectively, for a fourth spread of 6.1 EU/mg.  Again, we see that the variability in 
endotoxin concentration is much greater for urban homes than for farm homes. 
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c. Consider the box plots below. The endotoxin concentration in urban homes generally 

exceeds that in farm homes, whether measured by settled dust or bag dust. The endotoxin 
concentration in bag dust generally exceeds that of settled dust, both in urban homes and 
in farm homes. Settled dust in farm homes shows far less variability than any other 
scenario. 
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49.  

a. 2.75 3.01 56.80ixΣ = + + = , 2 2 22.75 3.01 197.8040ixΣ = + + =  
 

b. ,5016.
16
0252.8

16
17/)80.56(8040.197 2

2 ==
−

=s  708.=s  

 
50. From software or from the sums provided, x = 20179/27 = 747.37 and 

224657511 (20179) 606.89
26

/ 27s −
= = .  The maximum award should be 2x s+ = 747.37 + 

2(606.89) = 1961.16, or $1,961,160.  This is quite a bit less than the $3.5 million that was 
awarded originally. 
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51.  

a. From software, s2 = 1264.77 min2 and s = 35.56 min. Working by hand,  2563=Σx  and 
2 368501xΣ = , so 

 
2

2 368501 (2563) /19 1264.766
19 1

s −
= =

−
 and 1264.766 35.564s ==  

 
b. If y = time in hours, then y = cx where c = 1

60 . So, ( )22 2
60

2 1 1264.766 .351y xs c s= = = hr2 and 

( )1
60 35.564 .593y xs cs= = = hr. 

 
 
52. Let d denote the fifth deviation.  Then 03.10.19.3. =++++ d  or 05.3 =+ d , so 5.3−=d .  

One sample for which these are the deviations is ,8.31 =x  ,4.42 =x  ,5.43 =x  ,8.44 =x  
.05 =x  (These were obtained by adding 3.5 to each deviation; adding any other number will 

produce a different sample with the desired property.) 
 
 
53.  

a. Using software, for the sample of balanced funds we have 1.121, 1.050, 0.536x x s= = = ; 
for the sample of growth funds we have 1.244, 1.100, 0.448x x s= = = . 

 
b. The distribution of expense ratios for this sample of balanced funds is fairly symmetric, 

while the distribution for growth funds is positively skewed. These balanced and growth 
mutual funds have similar median expense ratios (1.05% and 1.10%, respectively), but 
expense ratios are generally higher for growth funds. The lone exception is a balanced 
fund with a 2.86% expense ratio. (There is also one unusually low expense ratio in the 
sample of balanced funds, at 0.09%.) 
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54.  
a. Minitab provides the stem-and-leaf display below. Grip strengths for this sample of 42 

individuals are positively skewed, and there is one high outlier at 403 N. 
 

 6    0  111234 
 14   0  55668999 
(10)  1  0011223444  Stem = 100s 
 18   1  567889   Leaf = 10s 
 12   2  01223334 
 4    2  59 
 2    3  2 
 1    3 
 1    4  0 
 

b. Each half has 21 observations. The lower fourth is the 11th observation, 87 N. The upper 
fourth is the 32nd observation (11th from the top), 210 N. The fourth spread is the 
difference: fs = 210 – 87 = 123 N. 

 
c. min = 16; lower fourth = 87; median = 140; upper fourth = 210; max = 403 
 

The boxplot tells a similar story: grip strengths are slightly positively skewed, with a 
median of 140N and a fourth spread of 123 N.  

 

 

4003002001000
Grip strength

 
 

d. inner fences: 87 – 1.5(123) = –97.5, 210 + 1.5(123) = 394.5 
outer fences: 87 – 3(123) = –282, 210 + 3(123) = 579 
Grip strength can’t be negative, so low outliers are impossible here. A mild high outlier is 
above 394.5 N and an extreme high outlier is above 579 N. The value 403 N is a mild 
outlier by this criterion. (Note: some software uses slightly different rules to define 
outliers — using quartiles and interquartile range — which result in 403 N not being 
classified as an outlier.) 
 

e. The fourth spread is unaffected unless that observation drops below the current upper 
fourth, 210. That’s a decrease of 403 – 210 = 193 N. 
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55.  
a. Lower half of the data set: 325   325   334   339   356   356   359   359   363   364   364   

366   369, whose median, and therefore the lower fourth, is 359 (the 7th observation in the 
sorted list).  
 
Upper half of the data set: 370   373   373   374   375   389   392   393   394   397   402   
403   424, whose median, and therefore the upper fourth is 392.    

 
So, fs = 392 – 359 = 33. 

 
b. inner fences: 359 – 1.5(33) = 309.5, 392 + 1.5(33) = 441.5 

To be a mild outlier, an observation must be below 309.5 or above 441.5. There are none 
in this data set. Clearly, then, there are also no extreme outliers.   

 
c. A boxplot of this data appears below.  The distribution of escape times is roughly 

symmetric with no outliers. Notice the box plot “hides” the fact that the distribution 
contains two gaps, which can be seen in the stem-and-leaf display.   
 

420400380360340320
Escape time (sec)

 
 

 
d. Not until the value x = 424 is lowered below the upper fourth value of 392 would there be 

any change in the value of the upper fourth (and, thus, of the fourth spread).  That is, the 
value x = 424 could not be decreased by more than 424 – 392 = 32 seconds. 
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56. The alcohol content distribution of this sample of 35 port wines is roughly symmetric except 
for two high outliers. The median alcohol content is 19.2% and the fourth spread is 1.42%. 
[upper fourth = (19.90 + 19.62)/2 = 19.76; lower fourth = (18.00 + 18.68)/2 = 18.34] The two 
outliers were 23.25% and 23.78%, indicating two port wines with unusually high alcohol 
content. 
 

24232221201918171615
Alcohol content (%)

 
 
 
57.  

a. fs = 216.8 – 196.0 = 20.8 
inner fences: 196 – 1.5(20.8) = 164.6, 216.8 + 1.5(20.8) = 248 
outer fences: 196 – 3(20.8) = 133.6, 216.8 + 3(20.8) = 279.2 
Of the observations listed, 125.8 is an extreme low outlier and 250.2 is a mild high 
outlier. 

 
b. A boxplot of this data appears below.  There is a bit of positive skew to the data but, 

except for the two outliers identified in part (a), the variation in the data is relatively 
small. 

 

x120    140    160    180    200    220    240    260

* *

 
 
 
 
58. The most noticeable feature of the comparative boxplots is that machine 2’s sample values 

have considerably more variation than does machine 1’s sample values.  However, a typical 
value, as measured by the median, seems to be about the same for the two machines.  The 
only outlier that exists is from machine 1. 
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59.  
a. If you aren’t using software, don’t forget to sort the data first! 

ED:  median = .4, lower fourth = (.1 + .1)/2 = .1, upper fourth = (2.7 + 2.8)/2 = 2.75, 
fourth spread = 2.75 – .1 = 2.65 

 
Non-ED: median = (1.5 + 1.7)/2 = 1.6, lower fourth = .3, upper fourth = 7.9,  
fourth spread = 7.9 – .3 = 7.6. 

 
b. ED:  mild outliers are less than .1 – 1.5(2.65) = –3.875 or greater than 2.75 + 1.5(2.65) = 

6.725.  Extreme outliers are less than .1 – 3(2.65) = –7.85 or greater than 2.75 + 3(2.65) = 
10.7.  So, the two largest observations (11.7, 21.0) are extreme outliers and the next two 
largest values (8.9, 9.2) are mild outliers.  There are no outliers at the lower end of the 
data. 

 
Non-ED: mild outliers are less than .3 – 1.5(7.6) = –11.1 or greater than 7.9 + 1.5(7.6) = 
19.3.  Note that there are no mild outliers in the data, hence there cannot be any extreme 
outliers, either. 

 
c. A comparative boxplot appears below.  The outliers in the ED data are clearly visible.  

There is noticeable positive skewness in both samples; the Non-ED sample has more 
variability then the Ed sample; the typical values of the ED sample tend to be smaller 
than those for the Non-ED sample. 
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60. A comparative boxplot (created in Minitab) of this data appears below. The burst strengths for 
the test nozzle closure welds are quite different from the burst strengths of the production 
canister nozzle welds. The test welds have much higher burst strengths and the burst strengths 
are much more variable. The production welds have more consistent burst strength and are 
consistently lower than the test welds.  The production welds data does contain 2 outliers. 
 

Cannister

Test Nozzle

85008000750070006500600055005000
Burst strength (lb/in^2)

 
  
 
61. Outliers occur in the 6a.m. data.  The distributions at the other times are fairly symmetric.  

Variability and the “typical” gasoline-vapor coefficient values increase somewhat until 2p.m., 
then decrease slightly.   
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Supplementary Exercises 
 
62. To simplify the math, subtract the mean from each observation; i.e., let i iy x x= − = 

76831ix − . Then y1 = 76683 – 76831 = –148 and y4 = 77048 – 76831 = 217; by rescaling, 
76831 0y x= − = , so y2 + y3 = –(y1 + y4) = –69. Also,  

 
2 2

2 2( ) 97200
1 3

180 3(180)i i
i

x x y y
n

s Σ − Σ
⇒ Σ ====

−
=  

so 2 2 2 2 2 2
2 3 1 497200 ( ) 97200 (( 148) (217) ) 28207yy y y+ = − + = − − + = . 

To solve the equations y2 + y3 = –69 and 2 2
2 3 28207yy + = , substitute y3 = –69 – y2 into the 

second equation and use the quadratic formula to solve. This gives y2 = 79.14 or –148.14 (one 
is y2 and one is y3). 
Finally, x2 and x3 are given by y2 + 76831 and y3 + 76831, or 79,610 and 76,683. 

 
 
63. As seen in the histogram below, this noise distribution is bimodal (but close to unimodal) with 

a positive skew and no outliers. The mean noise level is 64.89 dB and the median noise level 
is 64.7 dB. The fourth spread of the noise measurements is about 70.4 – 57.8 = 12.6 dB. 
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64.  
a. The sample coefficient of variation is similar for the three highest oil viscosity levels 

(29.66, 32.30, 27.86) but is much higher for the lowest viscosity (56.01). At low 
viscosity, it appears that there is much more variation in volume wear relative to the 
average or “typical” amount of wear.  

 
  Wear 

Viscosity  x  s cv 
20.4  40.17 22.50 56.01 
30.2  38.83 11.52 29.66 
89.4  84.10 27.20 32.30 

252.6  27.10 7.55 27.86 
 
 

b. Volume wear varies dramatically by viscosity level.  At very high viscosity, wear is 
typically the least and the least variable. Volume wear is actually by far the highest at a 
“medium” viscosity level and also has the greatest variability at this viscosity level. 
“Lower” viscosity levels correspond to less wear than a medium level, though there is 
much greater (relative) variation at a very low viscosity level. 
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65.  

a. The histogram appears below.   A representative value for this data would be around 90 
MPa.  The histogram is reasonably symmetric, unimodal, and somewhat bell-shaped with 
a fair amount of variability (s ≈ 3 or 4 MPa). 
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b. The proportion of the observations that are at least 85 is 1 – (6+7)/169 = .9231.  The 
proportion less than 95 is 1 – (13+3)/169 = .9053. 

 
c. 90 is the midpoint of the class 89–<91, which contains 43 observations (a relative 

frequency of 43/169 = .2544).  Therefore about half of this frequency, .1272, should be 
added to the relative frequencies for the classes to the left of x = 90.  That is, the 
approximate proportion of observations that are less than 90 is .0355 + .0414 + .1006 + 
.1775 + .1272 = .4822.   
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66.  

a. The initial Se concentrations in the treatment and control groups are not that different. 
The differences in the box plots below are minor. The median initial Se concentrations 
for the treatment and control groups are 10.3 mg/L and 10.5 mg/L, respectively, each 
with fourth spread of about 1.25 mg/L. So, the two groups of cows are comparable at the 
beginning of the study. 
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b. The final Se concentrations of the two groups are extremely different, as evidenced by 
the box plots below. Whereas the median final Se concentration for the control group is 
9.3 mg/L (actually slightly lower than the initial concentration), the median Se 
concentration in the treatment group is now 103.9 mg/L, nearly a 10-fold increase. 
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67.  

a. Aortic root diameters for males have mean 3.64 cm, median 3.70 cm, standard deviation 
0.269 cm, and fourth spread 0.40. The corresponding values for females are x  = 3.28 
cm, x~ = 3.15 cm, s = 0.478 cm, and fs = 0.50 cm. Aortic root diameters are typically 
(though not universally) somewhat smaller for females than for males, and females show 
more variability. The distribution for males is negatively skewed, while the distribution 
for females is positively skewed (see graphs below). 
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b. For females (n = 10), the 10% trimmed mean is the average of the middle 8 observations: 
)10(trx  = 3.24 cm. For males (n = 13), the 1/13 trimmed mean is 40.2/11 = 3.6545, and 

the 2/13 trimmed mean is 32.8/9 = 3.6444. Interpolating, the 10% trimmed mean is 
)10(trx  = 0.7(3.6545) + 0.3(3.6444) = 3.65 cm. (10% is three-tenths of the way from 1/13 

to 2/13). 
 
 
68.  

a. { }2 2( ) ( ) 2 ( ) 0 ( ) 0i i i i
d dx c x c x c x c
dc dc

− = − = − − = ⇒ − = ⇒∑ ∑ ∑ ∑  

0 0 i
i i i

x
x c x nc nc x c x

n
− = ⇒ − = ⇒ = ⇒ = =∑∑ ∑ ∑ ∑  

 
b.       Since c x= minimizes 2( )ix cΣ − , 2 2( ) ( )i ix x x µΣ − < Σ − . 
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69.  

a.  
( )

( ) ( ) ( )

( )

2 2 2
2

22
2 2
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1 1 1
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i i i i

i i i
y

i
x

y ax b a x b a x nb
y ax b

n n n n
y y ax b ax b ax ax

s
n n n

a x x
a s

n
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b.  
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70.  
a. There is a significant difference in the variability of the two samples.  The weight training 

produced much higher oxygen consumption, on average, than the treadmill exercise, with 
the median consumptions being approximately 20 and 11 liters, respectively. 

 

Treadmill

Weight

2520151050
Oxygen consumption (liters)
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b. The differences in oxygen consumption (weight minus treadmill) for the 15 subjects are 

3.3, 9.1, 10.4, 9.1, 6.2, 2.5, 2.2, 8.4, 8.7, 14.4, 2.5, –2.8, –0.4, 5.0, and 11.5. The majority 
of the differences are positive, which suggests that the weight training produced higher 
oxygen consumption for most subjects than the treadmill did. The median difference is 
about 6 liters. 
 

151050-5
Difference in oxygen consumption (liters)

 
 

71.  
a. The mean, median, and trimmed mean are virtually identical, which suggests symmetry.  

If there are outliers, they are balanced.  The range of values is only 25.5, but half of the 
values are between 132.95 and 138.25. 

 
b. See the comments for (a). In addition, using 1.5(Q3 – Q1) as a yardstick, the two largest 

and three smallest observations are mild outliers. 
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72. A table of summary statistics, a stem and leaf display, and a comparative boxplot are below.  
The healthy individuals have higher receptor binding measure, on average, than the 
individuals with PTSD.  There is also more variation in the healthy individuals’ values.  The 
distribution of values for the healthy is reasonably symmetric, while the distribution for the 
PTSD individuals is negatively skewed.  The box plot indicates that there are no outliers, and 
confirms the above comments regarding symmetry and skewness. 

 
 PTSD Healthy 

Mean 32.92 52.23 
Median 37 51 
Std Dev 9.93 14.86 

Min 10 23 
Max 46 72 

 
 
 
 
 

Healthy  PTSD  
 1 0 stem = tens 

3 2 058 leaf = ones 
9 3 1578899  

7310 4 26  
81 5   

9763 6   
2 7   

 
 

Healthy

PTSD

8070605040302010
Receptor binding measure
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73. From software, x  = .9255, s = .0809; x = .93, fs = .1. The cadence observations are slightly 
skewed (mean = .9255 strides/sec, median = .93 strides/sec) and show a small amount of 
variability (standard deviation = .0809, fourth spread = .1). There are no apparent outliers in 
the data. 
 

7 8 stem = tenths 
8 11556 leaf = hundredths 
9 2233335566  
0 0566  

 

1.051.000.950.900.850.80
Cadence (strides per second)

 
 
 

74.  
a. The mode is .93.  It occurs four times in the data set.  
 
b. The modal category is the one in which the most observations occur; i.e., the modal 

category has the highest frequency. In a survey, the modal category is the most 
popular answer. 
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75.  
a. The median is the same (371) in each plot and all three data sets are very symmetric.  In 

addition, all three have the same minimum value (350) and same maximum value (392).  
Moreover, all three data sets have the same lower (364) and upper quartiles (378).  So, all 
three boxplots will be identical. (Slight differences in the boxplots below are due to the 
way Minitab software interpolates to calculate the quartiles.) 

 

Type 3

Type 2

Type 1

390380370360350
Fatigue limit (MPa)

 
 
b. A comparative dotplot is shown below.  These graphs show that there are differences in 

the variability of the three data sets.  They also show differences in the way the values are 
distributed in the three data sets, especially big differences in the presence of gaps and 
clusters. 
 

390384378372366360354

Type 1
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c. The boxplot in (a) is not capable of detecting the differences among the data sets.  The 
primary reason is that boxplots give up some detail in describing data because they use 
only five summary numbers for comparing data sets.   
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76. The measures that are sensitive to outliers are:  the mean and the midrange.  The mean is 
sensitive because all values are used in computing it.  The midrange is sensitive because it 
uses only the most extreme values in its computation. 

The median, the trimmed mean, and the midfourth are not sensitive to outliers. 

 The median is the most resistant to outliers because it uses only the middle value (or values) 
in its computation. 

 The trimmed mean is somewhat resistant to outliers.  The larger the trimming percentage, the 
more resistant the trimmed mean becomes. 

 The midfourth, which uses the quartiles, is reasonably resistant to outliers because both 
quartiles are resistant to outliers. 

 
 
77.  

a.  
 

0   444444444577888999  leaf = 1.0 
1   00011111111124455669999 stem = 0.1 
2   1234457 
3   11355 
4   17 
5   3 
6 
7   67 
8   1 
 
HI  10.44, 13.41  

 
b. Since the intervals have unequal width, you must use a density scale. 
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c. Representative depths are quite similar for the three types of soils — between 1.5 and 2. 
Data from the C and CL soils shows much more variability than for the other two types. 
The boxplots for the first three types show substantial positive skewness both in the 
middle 50% and overall. The boxplot for the SYCL soil shows negative skewness in the 
middle 50% and mild positive skewness overall. Finally, there are multiple outliers for 
the first three types of soils, including extreme outliers. 

 
78.  

a. Since the constant x is subtracted from each x value to obtain each y value, and addition 
or subtraction of a constant doesn’t affect variability, 22

xy ss = and xy ss = . 
b. Let c = 1/s, where s is the sample standard deviation of the x’s (and also, by part (a), of 

the y’s).  Then 2 2 2 2 2(1/ )i i z ycy c s sz s s== =⇒ = 1 and sz = 1.  That is, the “standardized” 
quantities z1, …, zn have a sample variance and standard deviation of 1. 

 
79.  

a. 
1

1 1
1 1

,
n n

i i n n n
i i

x x x nx x
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= =

= + = +∑ ∑ so 1
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b.  In the second line below, we artificially add and subtract 2

nnx  to create the term needed 
for the sample variance: 

{ }

1 1
2 2 2 2

1 1 1
1 1

2 2 2 2 2 2 2 2
1 1 1 1

1 1

2 2 2 2
1 1

( ) ( 1)

( 1) ( 1)

( 1) ( 1)

n n

n i n i n
i i

n n

i n n i n n n n
i i

n n n n

ns x x x n x

x x n x x nx nx x n x

n s x nx n x

+ +

+ + +
= =

+ + + +
= =

+ +

= − = − +

 
= + − + = − + + − + 

 

= − + + − +

∑ ∑

∑ ∑  

Substitute the expression for 1nx + from part (a) into the expression in braces, and it 

simplifies to 2
1( )

1 n n
n x x

n + −
+

, as desired.  

c. First, 16
15(12.58) 11.8 200.5 12.53

16 16
x +

= = = . Then, solving (b) for 2
1ns + gives 

2 2 22 2
1 1

1 1 14 1( ) (.512) (11.8 12.58)
1 15 16n n n n

ns s x x
n n+ +

−
= + − = + −

+
= .238.  Finally, the 

standard deviation is 16 .238 .532s = = . 
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80.  
a.  
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b. There are 391 observations. The proportion of route lengths less than 20 km is (6 + 23 + 
… + 42)/391 = 216/391 = .552. The proportion of route lengths at least 30 km is (27 + 11 
+ 2)/391 = 40/391 = .102.  

c. First compute (.90)(391 + 1) = 352.8.  Thus, the 90th percentile should be about the 352nd 
ordered value.  The 352nd ordered value is the first value in the interval 30–<35.  We do 
not know how the values in that interval are distributed, however, the smallest value (i.e., 
the 352nd value in the data set) cannot be smaller than 30.  So, the 90th percentile is 
roughly 30. 

d. First compute (.50)(391 + 1) = 196.  Thus the median (50th percentile) should be the 196th 
ordered value.  The 196th observation lies in the interval 18–<20, which includes 
observations #175 to #216.  The 196th observation is about in the middle of these.  Thus, 
we would say the median is roughly 19. 

 
81. Assuming that the histogram is unimodal, then there is evidence of positive skewness in the 

data since the median lies to the left of the mean (for a symmetric distribution, the mean and 
median would coincide).    
 
For more evidence of skewness, compare the distances of the 5th and 95th percentiles from the 
median:  median – 5th %ile = 500 – 400 = 100, while 95th %ile – median = 720 – 500 = 220.   
Thus, the largest 5% of the values (above the 95th percentile) are further from the median 
than are the lowest 5%.  The same skewness is evident when comparing the 10th and 90th 
percentiles to the median, or comparing the maximum and minimum to the median. 
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82.  

a. There is some evidence of a cyclical pattern. 
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b. A complete listing of the smoothed values appears below. To illustrate, with α = .1 we 

have 2 2 1.1 .9 (.1)(54) (.9)(47) 47.7x x x= + = + = , 3 3 2.1 .9x x x= +  = (.1)(.53) + (.9)(47.7) = 
48.23 ≈ 48.2, etc. It’s clear from the values below that α = .1 gives a smoother series. 

 
t tx for α = .1 tx for α = .5 
1 47.0 47.0 
2 47.7 50.5 
3 48.2 51.8 
4 48.4 50.9 
5 48.2 48.4 
6 48.0 47.2 
7 47.9 47.1 
8 48.1 48.6 
9 48.4 49.8 

10 48.5 49.9 
11 48.3 47.9 
12 48.6 50.0 
13 48.8 50.0 
14 48.9 50.0 

 
c. As seen below, tx depends on xt and all previous values.  As k increases, the coefficient 

on xt–k decreases (further back in time implies less weight). 
1 1 2

2
1 2 3

2 2 1
1 2 2 1

(1 ) (1 )[ (1 ) ]

(1 ) (1 ) [ (1 ) ]

(1 ) (1 ) (1 ) (1 )

t t t t t t

t t t t
t t

t t t

x x x x x x

x x x x

x x x x x

α α α α α α

α α α α α α

α α α α α α α α

− − −

− − −

− −
− −

= + − = + − + −

= + − + − + − =

= + − + − + + − + −





 

 
d. For large t, the smoothed series is not very sensitive to the initival value x1, since the 

coefficient (1 – α)t–1 will be very small. 
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83.  
a. When there is perfect symmetry, the smallest observation y1 and the largest observation 

yn will be equidistant from the median, so 1n x yxy − = −  .  Similarly, the second-smallest 
and second-largest will be equidistant from the median, so 1 2n x xy y− − = −  , and so on.  
Thus, the first and second  numbers in each pair will be equal, so that each point in the 
plot will fall exactly on the 45° line.   

 
When the data is positively skewed, yn will be much further from the median than is y1, 
so ny x−   will considerably exceed 1x y−  and the point 1( , )n x xy y− −  will fall 
considerably below the 45° line, as will the other points in the plot. 

 
b. The median of these n = 26 observations is 221.6 (the midpoint of the 13th and 14th 

ordered values). The first point in the plot is (2745.6 – 221.6, 221.6 – 4.1) = (2524.0, 
217.5).  The others are: (1476.2, 213.9), (1434.4, 204.1), (756.4, 190.2), (481.8, 188.9), 
(267.5, 181.0), (208.4, 129.2), (112.5, 106.3), (81.2, 103.3), (53.1, 102.6), (53.1,  92.0), 
(33.4,  23.0), and (20.9, 20.9).  The first number in each of the first seven pairs greatly 
exceeds the second number, so each of those points falls well below the 45° line.  A 
substantial positive skew (stretched upper tail) is indicated. 
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84.  As suggested in the hint, split the sum into two “halves” corresponding to the lowest n/2 
observations and the highest n/2 observations (we’ll use L and U to denote these). 

 
|| | |

(

| |

) )(

i i i

i i

L U

L U

L L
i i

U U

x x x

x x x

x x x

x x x

x

x

= +

= +

= − + −

− − −

− −

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

  

 

 

  

Each of these four sums covers exactly n/2 terms. The first and fourth sums are, therefore, 
both equal to (n/2) x ; these cancel. The inner two sums may be re-written in terms of 
averages: 

|

( / 2) ( / 2)
| /

|

| 2( ) /

L L U U
i i i i i

L U

i U L

L U
x x xx x x x x

x x
x x

n n
x n x

= − +−

−

− = − +

= − + ⇒

= −

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑

  



 

 
When n is odd, the middle (ordered) value is exactly x . Using L and U to denote the lowest 
(n – 1)/2 observations and largest (n – 1)/2 observations, respectively, we may write 

| || || 0 |
L

i
U

i ix xxx xx= + +− − −∑ ∑ ∑   , where the 0 comes from the middle (ordered) value, 

viz. | 0| x x− =  . The rest of the derivation proceeds exactly as before, except that the surviving 
sums each have (n – 1)/2 terms in them, not n/2. As a result, for n odd we have 

| / ( 1)| ) / 2(i U Lx x xx n − = −−∑  . 
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CHAPTER 2 
 

Section 2.1 
 
1.  

a. S = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 
4231}. 

 
b. Event A contains the outcomes where 1 is first in the list: 

A = {1324, 1342, 1423, 1432}. 
 

c. Event B contains the outcomes where 2 is first or second: 
B = {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 

  
d. The event A∪B contains the outcomes in A or B or both: 

A∪B = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 
A∩B = ∅, since 1 and 2 can’t both get into the championship game. 
A′ = S – A = {2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}. 

 
 
2.  

a. A = {RRR, LLL, SSS}. 
 
b. B = {RLS, RSL, LRS, LSR, SRL, SLR}. 
 
c. C = {RRL, RRS, RLR, RSR, LRR, SRR}. 
 
d. D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, RSS, LSS} 
 
e. Event D′ contains outcomes where either all cars go the same direction or they all go different 

directions: 
D′ = {RRR, LLL, SSS, RLS, RSL, LRS, LSR, SRL, SLR}. 
Because event D totally encloses event C (see the lists above), the compound event C∪D is just event 
D: 
C∪D = D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, 
RSS, LSS}. 
Using similar reasoning, we see that the compound event C∩D is just event C: 
C∩D = C = {RRL, RRS, RLR, RSR, LRR, SRR}. 
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3.  
a. A = {SSF, SFS, FSS}. 
 
b. B = {SSS, SSF, SFS, FSS}. 
 
c. For event C to occur, the system must have component 1 working (S in the first position), then at least 

one of the other two components must work (at least one S in the second and third positions):  C = 
{SSS, SSF, SFS}. 

 
d. C′ = {SFF, FSS, FSF, FFS, FFF}. 

A∪C = {SSS, SSF, SFS, FSS}. 
A∩C = {SSF, SFS}. 
B∪C = {SSS, SSF, SFS, FSS}. Notice that B contains C, so B∪C = B.   
B∩C = {SSS SSF, SFS}. Since B contains C, B∩C = C. 

 
4.  

a. The 24 = 16 possible outcomes have been numbered here for later reference. 
 

 Home Mortgage Number 
Outcome 1 2 3 4 

1 F F F F 
2 F F F V 
3 F F V F 
4 F F V V 
5 F V F F 
6 F V F V 
7 F V V F 
8 F V V V 
9 V F F F 

10 V F F V 
11 V F V F 
12 V F V V 
13 V V F F 
14 V V F V 
15 V V V F 
16 V V V V 

 
b. Outcome numbers 2, 3, 5, 9 above. 
 
c. Outcome numbers 1, 16 above. 
 
d. Outcome numbers 1, 2, 3, 5, 9 above. 
 
e. In words, the union of (c) and (d) is the event that either all of the mortgages are variable, or that at 

most one of them is variable-rate: outcomes 1, 2, 3, 5, 9, 16.  The intersection of (c) and (d) is the event 
that all of the mortgages are fixed-rate: outcome 1. 

 
f. The union of (b) and (c) is the event that either exactly three are fixed, or that all four are the same:  

outcomes 1, 2, 3, 5, 9, 16.  The intersection of (b) and (c) is the event that exactly three are fixed and 
all four are the same type.  This cannot happen (the events have no outcomes in common), so the 
intersection of (b) and (c) is ∅. 
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5.  

a. The 33 = 27 possible outcomes are numbered below for later reference. 
  

Outcome   Outcome  
Number Outcome  Number Outcome 

1 111  15 223 
2 112  16 231 
3 113  17 232 
4 121  18 233 
5 122  19 311 
6 123  20 312 
7 131  21 313 
8 132  22 321 
9 133  23 322 
10 211  24 323 
11 212  25 331 
12 213  26 332 
13 221  27 333 
14 222    

 
b. Outcome numbers 1, 14, 27 above. 
 
c. Outcome numbers 6, 8, 12, 16, 20, 22 above. 
 
d. Outcome numbers 1, 3, 7, 9, 19, 21, 25, 27 above. 

 
 
6.  

a. S = {123, 124, 125, 213, 214, 215, 13, 14, 15, 23, 24, 25, 3, 4, 5}. 
 

b. A = {3, 4, 5}. 
 
c. B = {125, 215, 15, 25, 5}. 
 
d. C = {23, 24, 25, 3, 4, 5}. 

 
 
7.  

a. S = {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA, 
BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, 
ABBABAA, ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, 
ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, 
AAABBAB, AAABABB, AAAABBB}. 

 
b. AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB. 
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8.  

a. A1 ∪ A2 ∪ A3  

b. A1 ∩ A2 ∩ A3  

c. 1 2 3A AA ′ ′∩ ∩  

d. 1 2 3 1 2 3 1 2 3 )(( ) ( )A AA A A A A AA′ ′ ′ ′∩ ∩ ∪ ∩′ ′∩ ∪ ∩ ∩  

e. A1 ∪ (A2 ∩ A3)  
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9.  
a. In the diagram on the left, the shaded area is (A∪B)′.  On the right, the shaded area is A′, the striped 

area is B′, and the intersection A′∩B′ occurs where there is both shading and stripes.  These two 
diagrams display the same area. 

b. In the diagram below, the shaded area represents (A∩B)′.  Using the right-hand diagram from (a), the 
union of A′ and B′ is represented by the areas that have either shading or stripes (or both).  Both of the 
diagrams display the same area. 

 
10.  

a. Many examples exist; e.g., A = {Chevy, Buick}, B = {Ford, Lincoln}, C = {Toyota} are three mutually 
exclusive events. 

 
b. No. Let E = {Chevy, Buick}, F = {Buick, Ford}, G = {Toyota}.  These events are not mutually 

exclusive (E and F have an outcome in common), yet there is no outcome common to all three events. 
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Section 2.2 
 
11.  

a. .07. 
 
b. .15 + .10 + .05 = .30. 
 
c. Let A = the selected individual owns shares in a stock fund. Then P(A) = .18 + .25 = .43. The desired 

probability, that a selected customer does not shares in a stock fund, equals P(A′) = 1 – P(A) = 1 – .43 
= .57. This could also be calculated by adding the probabilities for all the funds that are not stocks. 

 
12.  

a. No, this is not possible. Since event A ∩ B is contained within event B, it must be the case that         
P(A ∩ B) ≤ P(B). However, .5 > .4. 
 

b. By the addition rule, P(A ∪ B) = .5 + .4 – .3 = .6. 
 
c. P(neither A nor B) = P(A′ ∩ B′) = P((A ∪ B)′) = 1 – P(A∪B) = 1 – .6 = .4. 
 
d. The event of interest is A∩B′; from a Venn diagram, we see P(A ∩ B′) = P(A) – P(A ∩ B) = .5 – .3 = 

.2. 
 

e. From a Venn diagram, we see that the probability of interest is P(exactly one) = P(at least one) – 
P(both) = P(A ∪ B) – P(A ∩ B) = .6 – .3 = .3. 

 
 
13.  

a. 1 2A A∪ = “awarded either #1 or #2 (or both)”: from the addition rule, 
P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) = .22 + .25 – .11 = .36. 

 
b. 1 2AA′ ′∩ = “awarded neither #1 or #2”: using the hint and part (a), 

 1 2 1 2 1 2( ) (( ) ) 1 ( )P A A A P A AP A′ ′∩ ∪ = − ∪′ = = 1 – .36 = .64. 
 

c. 1 2 3A A A∪ ∪ = “awarded at least one of these three projects”: using the addition rule for 3 events, 

1 2 3( )AP A A∪ ∪ =  1 2 3 1 2 1 3 2 3 1 2 3) ( ) ( ) ( ) ( ) ( ) )( (P A P A P A A P A A P A A P A A AP A + + − ∩ − ∩ − ∩ + ∩ ∩ = 
.22 +.25 + .28 – .11 – .05 – .07 + .01 = .53. 
 

d. 1 2 3A AA ′′ ′∩ ∩ = “awarded none of the three projects”: 
 1 2 3( )AP A A′ ′∩ ∩′ = 1 – P(awarded at least one) = 1 – .53 = .47. 
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e. 1 2 3A AA ′′∩ ∩ = “awarded #3 but neither #1 nor #2”: from a Venn diagram,  

 1 2 3( )A AP A′∩ ∩′ = P(A3) – P(A1 ∩ A3) – P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3) = 
.28 – .05 – .07 + .01 = .17. The last term addresses the “double counting” of the two subtractions. 

     
f. 1 2 3( )AA A′∩ ∪′ = “awarded neither of #1 and #2, or awarded #3”: from a Venn diagram, 

1 2 3( ))( A AP A′∩ ∪′ = P(none awarded) + P(A3) = .47 (from d) + .28 = 75.   

 
Alternatively, answers to a-f can be obtained from probabilities on the accompanying Venn diagram: 

 
14. Let A = an adult consumes coffee and B = an adult consumes carbonated soda. We’re told that P(A) = .55, 

P(B) = .45, and P(A ∪ B) = .70. 
a. The addition rule says P(A∪B) = P(A) + P(B) – P(A∩B), so .70 = .55 + .45 – P(A∩B) or P(A∩B) = .55 

+ .45 – .70 = .30. 
 

b. There are two ways to read this question. We can read “does not (consume at least one),” which means 
the adult consumes neither beverage. The probability is then P(neither A nor B) = )(P BA′ ′∩ = 1 –   
P(A ∪ B) = 1 – .70 = .30. 

 
The other reading, and this is presumably the intent, is “there is at least one beverage the adult does not 
consume, i.e. BA′ ′∪ . The probability is )(P BA′ ′∪  = 1 – P(A ∩ B) = 1 – .30 from a = .70.  (It’s just a 
coincidence this equals P(A ∪ B).) 
 
Both of these approaches use deMorgan’s laws, which say that )(P BA′ ′∩ = 1 – P(A∪B) and 

)(P BA′ ′∪  = 1 – P(A∩B). 
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15.   

a. Let E be the event that at most one purchases an electric dryer.  Then E′ is the event that at least two 
purchase electric dryers, and P(E′) = 1 – P(E) = 1 – .428 = .572. 

 
b. Let A be the event that all five purchase gas, and let B be the event that all five purchase electric.  All 

other possible outcomes are those in which at least one of each type of clothes dryer is purchased.  
Thus, the desired probability is 1 – [P(A) – P(B)] =  
1 – [.116 + .005] = .879. 

 
 

16.  
a. There are six simple events, corresponding to the outcomes CDP, CPD, DCP, DPC, PCD, and PDC.  

Since the same cola is in every glass, these six outcomes are equally likely to occur, and the probability 
assigned to each is 6

1 . 
 
b. P(C ranked first) = P({CPD, CDP}) = 1 1 2

6 6 6+ = = .333. 
 
c. P(C ranked first and D last) = P({CPD}) = 6

1 . 
 
17.  

a. The probabilities do not add to 1 because there are other software packages besides SPSS and SAS for 
which requests could be made. 

 
b. P(A′) = 1 – P(A) = 1 – .30 = .70. 
 
c. Since A and B are mutually exclusive events, P(A ∪ B) = P(A) + P(B) = .30 + .50 = .80.  
 
d. By deMorgan’s law, P(A′ ∩ B′) = P((A ∪ B)′) = 1 – P(A ∪ B) = 1 – .80 = .20. 

In this example, deMorgan’s law says the event “neither A nor B” is the complement of the event 
“either A or B.”  (That’s true regardless of whether they’re mutually exclusive.) 

 
 
18. The only reason we’d need at least two selections to find a $10 bill is if the first selection was not a $10 bill 

bulb. There are 4 + 6 = 10 non-$10 bills out of 5 + 4 + 6 = 15 bills in the wallet, so the probability of this 
event is simply 10/15, or 2/3. 

 
 
19. Let A be that the selected joint was found defective by inspector A, so P(A) = 000,10

724 .  Let B be analogous 

for inspector B, so P(B) = 000,10
751 .  The event “at least one of the inspectors judged a joint to be defective is 

A∪B, so P(A∪B) = 000,10
1159 . 

 
a. By deMorgan’s law, P(neither A nor B) = )(P BA′ ′∩ = 1 – P(A∪B) = 1 – 000,10

1159  = 000,10
8841  = .8841. 

 
b. The desired event is B∩A′. From a Venn diagram, we see that P(B∩A′) = P(B) – P(A∩B). From the 

addition rule,  P(A∪B) = P(A) + P(B) – P(A∩B) gives P(A∩B) = .0724 + .0751 – .1159 = .0316.  
Finally, P(B∩A′) = P(B) – P(A∩B) = .0751 – .0316 = .0435. 
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20.  
a. Let S1, S2 and S3 represent day, swing, and night shifts, respectively.  Let C1 and C2 represent unsafe 

conditions and unrelated to conditions, respectively. Then the simple events are S1C1, S1C2, S2C1, S2C2, 
S3C1, S3C2. 

 
b. P(C1)= P({S1C1, S2C1, S3C1})= .10 + .08 + .05 = .23. 
 
c. P( 1S ′ ) = 1 – P({S1C1, S1C2}) = 1 – ( .10 + .35) = .55. 
 
 

21. In what follows, the first letter refers to the auto deductible and the second letter refers to the homeowner’s 
deductible. 
a. P(MH) = .10. 
 
b. P(low auto deductible) = P({LN, LL, LM, LH}) = .04 + .06 + .05 + .03 = .18. Following a similar 

pattern, P(low homeowner’s deductible) = .06 + .10 + .03 = .19. 
 
c. P(same deductible for both) = P({LL, MM, HH}) = .06 + .20 + .15 = .41. 
 
d. P(deductibles are different) = 1 – P(same deductible for both) = 1 – .41 = .59. 
 
e. P(at least one low deductible) = P({LN, LL, LM, LH, ML, HL}) = .04 + .06 + .05 + .03 + .10 + .03 = 

.31. 
 

f. P(neither deductible is low) = 1 – P(at least one low deductible) = 1 – .31 = .69. 
 
 
22. Let A = motorist must stop at first signal and B = motorist must stop at second signal. We’re told that P(A) 

= .4, P(B) = .5, and P(A ∪ B) = .6. 
a. From the addition rule, P(A ∪ B) = P(A) + P(B) – P(A ∩ B), so .6 = .4 + .5 – P(A ∩ B), from which 

P(A ∩ B) = .4 + .5 – .6 = .3. 
 
b. From a Venn diagram, P(A ∩ B′) = P(A) – P(A ∩ B) = .4 – .3 = .1. 
 
c. From a Venn diagram, P(stop at exactly one signal) = P(A ∪ B) – P(A ∩ B) = .6 – .3 = .3. Or, P(stop at 

exactly one signal) = P([A ∩ B′]∪ [A′ ∩ B]) = P(A ∩ B′) + P(A′ ∩ B) = [P(A) – P(A ∩ B)] + [P(B) – 
P(A ∩ B)] = [.4 – .3] + [.5 – .3] = .1 + .2 = .3. 

 
 

23. Assume that the computers are numbered 1-6 as described and that computers 1 and 2 are the two laptops.  
There are 15 possible outcomes: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) 
(4,6) and (5,6). 

 
a. P(both are laptops) = P({(1,2)}) = 15

1 =.067. 
 
b. P(both are desktops) = P({(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)}) = 15

6 = .40. 
 
c. P(at least one desktop) = 1 – P(no desktops) = 1 – P(both are laptops) = 1 – .067 = .933. 

 
d. P(at least one of each type) =  1 – P(both are the same) = 1 – [P(both are laptops) +      P(both are 

desktops)]  =  1 – [.067 + .40] = .533. 
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24. Since A is contained in B, we may write B = A ∪ (B ∩ A′), the union of two mutually exclusive events. (See 
diagram for these two events.) Apply the axioms: 
P(B) = P(A ∪ (B ∩ A′)) = P(A) + P(B ∩ A′) by Axiom 3. Then, since P(B ∩ A′) ≥ 0 by Axiom 1, P(B) = 
P(A) + P(B ∩ A′) ≥ P(A) + 0 = P(A). This proves the statement. 
 
 
 
 
 
 
 
 
 
 
 
 
For general events A and B (i.e., not necessarily those in the diagram), it’s always the case that A∩B is 
contained in A as well as in B, while A and B are both contained in A∪B. Therefore, P(A∩B) ≤ P(A) ≤ 
P(A∪B) and P(A∩B) ≤ P(B) ≤ P(A∪B). 
 

 
25. By rearranging the addition rule, P(A ∩ B) =  P(A) + P(B) – P(A∪B) = .40 + .55 – .63 = .32. By the same 

method, P(A ∩ C) = .40 + .70 – .77 = .33 and P(B ∩ C) = .55 + .70 – .80 = .45. Finally, rearranging the 
addition rule for 3 events gives 
P(A ∩ B ∩ C) = P(A ∪ B ∪ C) – P(A) – P(B) – P(C) + P(A ∩ B) + P(A ∩ C) + P(B ∩ C) = .85 – .40 – .55 
– .70 + .32 + .33 + .45 = .30. 
 
These probabilities are reflected in the Venn diagram below. 

 

 
 

a. P(A ∪ B ∪ C) = .85, as given. 
 
b. P(none selected) = 1 – P(at least one selected) = 1 – P(A ∪ B ∪ C) = 1 – .85 = .15. 
 
c. From the Venn diagram, P(only automatic transmission selected) = .22. 
 
d. From the Venn diagram, P(exactly one of the three) = .05 + .08 + .22 = .35. 

 
 

A 

B 

shaded area = B ∩ A′ 

.05 
.02 

.03 

.08 

.30 
.15 

.22 .15 

A B 

C 
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26. These questions can be solved algebraically, or with the Venn diagram below. 

a. 1 1( ) 1 ( )P A P A′ = − = 1 – .12 = .88. 
   

b. The addition rule says ) ( )( ( ) ( )P B P A P B A BA P∪ = + − ∩ . Solving for the intersection (“and”) 
probability, you get 1 2 1 2 1 2) ( ) ( ) ( )( A P A P AP A P A A∩ = + − ∪ = .12 + .07 – .13 = .06. 

 
c. A Venn diagram shows that ) ( ) ( )( B P AP A P A B′∩ = − ∩ . Applying that here with 1 2A AA= ∩  and B 

= A3, you get 1 2 3 1 2 1 2 3([ ) ((] ) )P A P AA A A P A A A′∩ − ∩ ∩=∩ ∩ =     .06 – .01 = .05. 
 

d. The event “at most two defects” is the complement of “all three defects,” so the answer is just 1 – 
1 2 3( )P A A A∩ ∩  = 1 – .01 = .99. 

 
 

 
 

 
 
27. There are 10 equally likely outcomes: {A, B} {A, Co} {A, Cr} {A,F} {B, Co} {B, Cr} {B, F} {Co, Cr} 

{Co, F} and {Cr, F}. 
a. P({A, B}) = 1

10  = .1. 
 
b. P(at least one C) = P({A, Co} or {A, Cr} or {B, Co} or {B, Cr} or {Co, Cr} or {Co, F} or {Cr, F}) = 

7
10 = .7. 

 
c. Replacing each person with his/her years of experience, P(at least 15 years) = P({3, 14} or {6, 10} or 

{6, 14} or {7, 10} or {7, 14} or {10, 14}) = 6
10 = .6. 

 
 

28. Recall there are 27 equally likely outcomes. 
a. P(all the same station) = P((1,1,1) or (2,2,2) or (3,3,3)) = 9

1
27
3 = . 

 
b. P(at most 2 are assigned to the same station) = 1 – P(all 3 are the same) = 1 – 1

9 = 8
9 . 

 
c. P(all different stations) = P((1,2,3) or (1,3,2) or (2,1,3) or (2,3,1) or (3,1,2) or (3,2,1))  

= 9
2

27
6 = . 

 

.04
  

.05 

.02 

.00 

.01 
.01 

.01 .86 

A1 A2 

A3 
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Section 2.3 
 
29.  

a. There are 26 letters, so allowing repeats there are (26)(26) = (26)2 = 676 possible 2-letter domain 
names. Add in the 10 digits, and there are 36 characters available, so allowing repeats there are 
(36)(36) = (36)2 = 1296 possible 2-character domain names. 

 
b. By the same logic as part a, the answers are (26)3 = 17,576 and (36)3 = 46,656. 

 
c. Continuing, (26)4 = 456,976; (36)4 = 1,679,616. 

 
d. P(4-character sequence is already owned) = 1 – P(4-character sequence still available) = 1 – 

97,786/(36)4 = .942. 
 

30.  
a. Because order is important, we’ll use P3,8 = (8)(7)(6) = 336. 
 

b. Order doesn’t matter here, so we use 
30
6

 
 
 

 = 593,775. 

 

c. The number of ways to choose 2 zinfandels from the 8 available is 
8
2
 
 
 

. Similarly, the number of ways 

to choose the merlots and cabernets are 
10
2

 
 
 

and 
12
2

 
 
 

, respectively. Hence, the total number of 

options (using the Fundamental Counting Principle) equals  
8 10 12
2 2 2
   
   
   

= (28)(45)(66) = 83,160. 

d. The numerator comes from part c and the denominator from part b:  83,160
593,775

= .140. 

e. We use the same denominator as in part d.  The number of ways to choose all zinfandel is 
8
6
 
 
 

, with 

similar answers for all merlot and all cabernet. Since these are disjoint events,  P(all same) = P(all zin) + 

P(all merlot) + P(all cab) = 002.
775,593

1162

6
30

6
12

6
10

6
8

==


















+








+









. 

 
 
31.  

a. Use the Fundamental Counting Principle: (9)(5) = 45. 
 
b. By the same reasoning, there are (9)(5)(32) = 1440 such sequences, so such a policy could be carried 

out for 1440 successive nights, or almost 4 years, without repeating exactly the same program. 
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32.  

a. Since there are 5 receivers, 4 CD players, 3 speakers, and 4 turntables, the total number of possible 
selections is (5)(4)(3)(4) = 240. 

 
b. We now only have 1 choice for the receiver and CD player: (1)(1)(3)(4) = 12. 
 
c. Eliminating Sony leaves 4, 3, 3, and 3 choices for the four pieces of equipment, respectively: 

(4)(3)(3)(3) = 108. 
 
d. From a, there are 240 possible configurations. From c, 108 of them involve zero Sony products.  So, 

the number of configurations with at least one Sony product is 240 – 108 = 132. 
 

e. Assuming all 240 arrangements are equally likely, P(at least one Sony) =
132
240

= .55. 

 
Next, P(exactly one component Sony) = P(only the receiver is Sony) + P(only the CD player is Sony) 
+ P(only the turntable is Sony). Counting from the available options gives  

P(exactly one component Sony) = 
(1)(3)(3)(3) (4)(1)(3)(3) (4)(3)(3)(1) 99 .413

240 240
+ +

= = . 

 
 

33.  
a. Since there are 15 players and 9 positions, and order matters in a line-up (catcher, pitcher, shortstop, 

etc. are different positions), the number of possibilities is P9,15 = (15)(14)…(7) or 15!/(15–9)! = 
1,816,214,440. 

 
b. For each of the starting line-ups in part (a), there are 9! possible batting orders. So, multiply the answer 

from (a) by 9! to get (1,816,214,440)(362,880) = 659,067,881,472,000. 
 
c. Order still matters: There are P3,5 = 60 ways to choose three left-handers for the outfield and P6,10 = 

151,200 ways to choose six right-handers for the other positions. The total number of possibilities is  = 
(60)(151,200) = 9,072,000. 

 
 
34.  

a. Since order doesn’t matter, the number of ways to randomly select 5 keyboards from the 25 available 

is 
25
5

 
 
 

= 53,130. 

 
b. Sample in two stages. First, there are 6 keyboards with an electrical defect, so the number of ways to 

select exactly 2 of them is 
6
2
 
 
 

. Next, the remaining 5 – 2 = 3 keyboards in the sample must have 

mechanical defects; as there are 19 such keyboards, the number of ways to randomly select 3 is 
19
3

 
 
 

. 

So, the number of ways to achieve both of these in the sample of 5 is the product of these two counting 

numbers: 
6
2
 
 
 

19
3

 
 
 

= (15)(969) = 14,535.  
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c. Following the analogy from b, the number of samples with exactly 4 mechanical defects is 
19 6
4 1

  
  
  

, 

and the number with exactly 5 mechanical defects is 
19
5 0

6  
  
  

. So, the number of samples with at least 

4 mechanical defects is 
19 6
4 1

  
  
  

 + 
19
5 0

6  
  
  

, and the probability of this event is 

19 6 19 6
4 1 5 0

25
5

     
+     

     
 
 
 

= 34,884
53,130

= .657. (The denominator comes from a.) 

 
35.  

a. There are 
10
5

 
 
 

= 252 ways to select 5 workers from the day shift. In other words, of all the ways to 

select 5 workers from among the 24 available, 252 such selections result in 5 day-shift workers.  Since 

the grand total number of possible selections is 
24
5

 
 
 

 = 42504, the probability of randomly selecting 5 

day-shift workers (and, hence, no swing or graveyard workers) is 252/42504 = .00593. 
 

 

b. Similar to a, there are 
8
5
 
 
 

 = 56 ways to select 5 swing-shift workers and 
6
5
 
 
 

 = 6 ways to select 5 

graveyard-shift workers. So, there are 252 + 56 + 6 = 314 ways to pick 5 workers from the same shift. 
The probability of this randomly occurring is 314/42504 = .00739.    

 
c. P(at least two shifts represented) = 1 – P(all from same shift) = 1 – .00739 = .99261. 
       
 
d. There are several ways to approach this question. For example, let A1 = “day shift is unrepresented,”  

A2 = “swing shift is unrepresented,” and A3 = “graveyard shift is unrepresented.”  Then we want      
P(A1 ∪ A2 ∪ A3). 

N(A1) = N(day shift unrepresented) = N(all from swing/graveyard) =
8 6

5
 
 
 

+
 = 2002,  

since there are 8 + 6 = 14 total employees in the swing and graveyard shifts. Similarly,  

N(A2) = 
10 6

5
 + 
 
 

 = 4368 and N(A3) = 
10 8

5
 + 
 
 

 = 8568. Next, N(A1 ∩ A2) = N(all from graveyard) = 6 

from b. Similarly, N(A1 ∩ A3) = 56 and N(A2 ∩ A3) = 252. Finally, N(A1 ∩ A2 ∩ A3) = 0, since at least 
one shift must be represented. Now, apply the addition rule for 3 events: 

P(A1 ∪ A2 ∪ A3) =
2002 4368 8568 6 56 252 0

4250
14624
425044

+ + − − − +
=  = .3441. 

 

36. There are 







2
5

= 10 possible ways to select the positions for B’s votes:  BBAAA, BABAA, BAABA, BAAAB, 

ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB.  Only the last two have A ahead of B throughout 
the vote count.  Since the outcomes are equally likely, the desired probability is 2/10 = .20. 
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37.  

a. By the Fundamental Counting Principle, with n1 = 3, n2 = 4, and n3 = 5, there are (3)(4)(5) = 60 runs. 
 
b. With n1 = 1 (just one temperature), n2 = 2, and n3 = 5, there are (1)(2)(5) = 10 such runs. 

 
c. For each of the 5 specific catalysts, there are (3)(4) = 12 pairings of temperature and pressure. Imagine 

we separate the 60 possible runs into those 5 sets of 12. The number of ways to select exactly one run 

from each of these 5 sets of 12 is 
512

1
 
 
 

= 125. Since there are 







5
60

ways to select the 5 runs overall, 

the desired probability is 
5

5/ 1
12 60 60

/
1 5 5

2     
=     

     
= .0456. 

 
38.  

a. A sonnet has 14 lines, each of which may come from any of the 10 pages. Order matters, and we’re 
sampling with replacement, so the number of possibilities is 10 × 10 × … × 10 = 1014. 
 

b. Similarly, the number of sonnets you could create avoiding the first and last pages (so, only using lines 
from the middle 8 sonnets) is 814. Thus, the probability that a randomly-created sonnet would not use 
any lines from the first or last page is 814/1014 = .814 = .044. 
 

39. In a-c, the size of the sample space is N = 
5 6 4 15

3 3
   

= 
 

+



+



= 455. 

a. There are four 23W bulbs available and 5+6 = 11 non-23W bulbs available. The number of ways to 

select exactly two of the former (and, thus, exactly one of the latter) is 
4 11
2 1
  
  
  

 = 6(11) = 66. Hence, 

the probability is 66/455 = .145. 
 

b. The number of ways to select three 13W bulbs is 
5
3
 
 
 

 = 10. Similarly, there are 
6
3
 
 
 

 = 20 ways to 

select three 18W bulbs and 
4
3
 
 
 

= 4 ways to select three 23W bulbs. Put together, there are 10 + 20 + 4 

= 34 ways to select three bulbs of the same wattage, and so the probability is 34/455 = .075. 
 
 

c. The number of ways to obtain one of each type is 
5 6 4
1 1 1
   
   
   

 = (5)(6)(4) = 120, and so the probability 

is 120/455 = .264. 
 

d. Rather than consider many different options (choose 1, choose 2, etc.), re-frame the problem this way: 
at least 6 draws are required to get a 23W bulb iff a random sample of five bulbs fails to produce a 
23W bulb. Since there are 11 non-23W bulbs, the chance of getting no 23W bulbs in a sample of size 5 

is 
11 15

/
5 5

   
   
   

 = 462/3003 = .154. 
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40.  

a. If the A’s were distinguishable from one another, and similarly for the B’s, C’s and D’s, then there 
would be 12! possible chain molecules.  Six of these are: 

A1A2A3B2C3C1D3C2D1D2B3B1  A1A3A2B2C3C1D3C2D1D2B3B1 
A2A1A3B2C3C1D3C2D1D2B3B1  A2A3A1B2C3C1D3C2D1D2B3B1 
A3A1A2B2C3C1D3C2D1D2B3B1  A3A2A1B2C3C1D3C2D1D2B3B1 

These 6 (=3!) differ only with respect to ordering of the 3 A’s.  In general, groups of 6 chain molecules 
can be created such that within each group only the ordering of the A’s is different.  When the A 
subscripts are suppressed, each group of 6 “collapses” into a single molecule (B’s, C’s and D’s are still 
distinguishable).   
At this point there are (12!/3!) different molecules.  Now suppressing subscripts on the B’s, C’s, and 

D’s in turn gives 4

12 3!
(

6 0
3!)

9,60=  chain molecules. 

 
b. Think of the group of 3 A’s as a single entity, and similarly for the B’s, C’s, and D’s.  Then there are 4! 

= 24 ways to order these triplets, and thus 24 molecules in which the A’s are contiguous, the B’s, C’s, 

and D’s also.  The desired probability is 24 .00006494
369,600

= . 

 
41.  

a. (10)(10)(10)(10) = 104 = 10,000.  These are the strings 0000 through 9999. 
 

b. Count the number of prohibited sequences. There are (i) 10 with all digits identical (0000, 1111, …, 
9999); (ii) 14 with sequential digits (0123, 1234, 2345, 3456, 4567, 5678, 6789, and 7890, plus these 
same seven descending); (iii) 100 beginning with 19 (1900 through 1999).  That’s a total of 10 + 14 + 
100 = 124 impermissible sequences, so there are a total of 10,000 – 124 = 9876 permissible sequences. 

The chance of randomly selecting one is just 9876
10,000

= .9876. 

 
c. All PINs of the form 8xx1 are legitimate, so there are (10)(10) = 100 such PINs. With someone 

randomly selecting 3 such PINs, the chance of guessing the correct sequence is 3/100 = .03. 
 

d. Of all the PINs of the form 1xx1, eleven is prohibited: 1111, and the ten of the form 19x1. That leaves 
89 possibilities, so the chances of correctly guessing the PIN in 3 tries is 3/89 = .0337. 
 

42.  

a. If Player X sits out, the number of possible teams is 
3 4 4
1 2 2
   
   
   

= 108. If Player X plays guard, we 

need one more guard, and the number of possible teams is
3 4 4
1 21
   
   
   

= 72. Finally, if Player X plays 

forward, we need one more forward, and the number of possible teams is 
3 4 4
1 2 1
   
   
   

= 72. So, the 

total possible number of teams from this group of 12 players is 108 + 72 + 72 = 252. 
 

b. Using the idea in a, consider all possible scenarios. If Players X and Y both sit out, the number of 

possible teams is 
3 5 5
1 2 2
   
   
   

= 300. If Player X plays while Player Y sits out, the number of possible 
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teams is 
3 5 5
1 1 2
   
   
   

+
3 5 5
1 2 1
   
   
   

= 150 + 150 = 300. Similarly, there are 300 teams with Player X 

benched and Player Y in. Finally, there are three cases when X and Y both play: they’re both guards, 
they’re both forwards, or they split duties. The number of ways to select the rest of the team under 

these scenarios is 
3 5 5
1 0 2
   
   
   

+ 
3 5 5
1 2 0
   
   
   

 + 
3 5 5
1 1 1
   
   
   

= 30 + 30 + 75 = 135.  

 

Since there are 
15
5

 
 
 

= 3003 ways to randomly select 5 players from a 15-person roster, the probability 

of randomly selecting a legitimate team is
300 300 135

3003
+ +

=
735

3003
= .245. 

 

43. There are 
52
5

 
 
 

= 2,598,960 five-card hands. The number of 10-high straights is (4)(4)(4)(4)(4) = 45 = 1024 

(any of four 6s, any of four 7s, etc.). So, P(10 high straight) = 1024 .000394
2,598,960

= . Next, there ten “types 

of straight: A2345, 23456, …, 910JQK, 10JQKA. So, P(straight) = 102410 .00394
2,598,960

× = . Finally, there 

are only 40 straight flushes: each of the ten sequences above in each of the 4 suits makes (10)(4) = 40. So, 

P(straight flush) = 40 .00001539
2,598,960

= . 

 

44. 







−

=
−

=
−

=







kn

n
kkn

n
knk

n
k
n

!)!(
!

)!(!
!  

 
The number of subsets of size k equals the number of subsets of size n – k, because to each subset of size k 
there corresponds exactly one subset of size n – k: the n – k objects not in the subset of size k. The 
combinations formula counts the number of ways to split n objects into two subsets: one of size k, and one 
of size n – k. 
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Section 2.4 
 
45.  

a. P(A) =  .106 + .141 + .200 = .447, P(C) =.215 + .200 + .065 + .020 = .500, and P(A ∩ C) = .200. 
 

b. P(A|C) = 400.
500.
200.

)(
)(

==
∩
CP

CAP .  If we know that the individual came from ethnic group 3, the 

probability that he has Type A blood is .40. P(C|A) = ( )
( )

P A C
P A
∩

 
=

.200

.447
= .447. If a person has Type A 

blood, the probability that he is from ethnic group 3 is .447. 
 
c. Define D = “ethnic group 1 selected.”   We are asked for P(D|B′). From the table, P(D∩B′) = .082 + 

.106 + .004 = .192 and P(B′) = 1 – P(B) = 1 – [.008 + .018 + .065] = .909. So, the desired probability is 

P(D|B′) = 211.
909.
192.

)(
)(

==
′
′∩

BP
BDP .   

 
46. Let A be that the individual is more than 6 feet tall.  Let B be that the individual is a professional basketball 

player. Then  P(A|B) = the probability of the individual being more than 6 feet tall, knowing that the 
individual is a professional basketball player, while P(B|A) = the probability of the individual being a 
professional basketball player, knowing that the individual is more than 6 feet tall.   P(A|B) will be larger. 
Most professional basketball players are tall, so the probability of an individual in that reduced sample 
space being more than 6 feet tall is very large.  On the other hand, the number of individuals that are pro 
basketball players is small in relation to the number of males more than 6 feet tall. 

 
47.  

a. Apply the addition rule for three events: P(A ∪ B ∪ C) = .6 + .4 + .2 – .3 – .15 – .1 + .08 = .73. 
 
b. P(A ∩ B ∩ C′) = P(A ∩ B) – P(A ∩ B ∩ C) = .3 – .08 = .22. 
 

c. P(B|A) = ( ) .3 .50
( ) .6

P A B
P A
∩

= = and P(A|B) = ( ) .3 .75
( ) .4

P A B
P B
∩

= = . Half of students with Visa cards also 

have a MasterCard, while three-quarters of students with a MasterCard also have a Visa card. 
 

d. P(A ∩ B | C) = ([ ] ) ( ) .08
( ) ( ) .2

P A B P A B
P C P C

C C∩ ∩
= =

∩ ∩ = .40. 

e. P(A ∪ B | C) = ([ ] ) ([ [ )
( ) ( )

] ]P A B P A B
P C P C

C C C∪ ∩ ∩ ∪ ∩
= . Use a distributive law: 

= ( ) ([
)

) ( ])
(

] [P C P CA B P A
P C

C B C∩ + ∩ ∩ ∩ ∩− = ( ) (
( )

) ( )CP A B PP C CA
P

B
C

−∩ + ∩ ∩ ∩  = 

.15 .1 .08
.2

+ −  = .85. 
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48.  

a. 2 1
2 1

1

( ) .06( | )
( ) .12

P A A
A

A
P

P A ∩
= = = .50. The numerator comes from Exercise 26. 

b. 1 2 3 1 1 2 3
1 2 3 1

1 1

) ) .01| ([ ])
( ) ( ) . 2

(
1

(P A PA A A A AA A A
P

AP A
A P A

∩ ∩ ∩ ∩ ∩
∩ ∩ = = = = .0833. The numerator 

simplifies because 1 2 3A A A∩ ∩ is a subset of A1, so their intersection is just the smaller event. 
 
c. For this example, you definitely need a Venn diagram. The seven pieces of the partition inside the 

three circles have probabilities .04, .05, .00, .02, .01, .01, and .01.  Those add to .14 (so the chance of 
no defects is .86).  
Let E = “exactly one defect.” From the Venn diagram, P(E) = .04 + .00 + .01 = .05. From the addition 
above, P(at least one defect) = 1 2 3( )AP A A∪ ∪ = .14. Finally, the answer to the question is 

1 2 3
1 2 3

1 2 3 1 2 3

[ ) ) .05)
) ) .14

( ] (( |
( (

P E A P EP E A
P A P A

A AA A
A A A A

∩ ∪ ∪
∪ ∪ = = =

∪ ∪ ∪ ∪
= .3571. The numerator 

simplifies because E is a subset of 1 2 3A A A∪ ∪ . 
 

d. 3 1 2
3 1 2

1 2

[ ) .05)
) .0

(
6

( ]|
(

AP A AP A A
P A

A
A

∩ ∩
=

∩
′

′ ∩ = = .8333. The numerator is Exercise 26(c), while the 

denominator is Exercise 26(b). 
 
49.  

a. P(small cup) = .14 + .20 = .34. P(decaf) = .20 + .10 + .10 = .40. 
 

b. P(decaf | small) = decaf )(small .20
(small) .34

P
P

=
∩ = .588. 58.8% of all people who purchase a small cup of 

coffee choose decaf. 

c. P(small | decaf) = decaf )(small .20
(decaf ) .40

P
P

=
∩ = .50. 50% of all people who purchase decaf coffee choose 

the small size. 
 

50.  
a. P(M ∩ LS ∩ PR) = .05, directly from the table of probabilities. 
 
b. P(M ∩ Pr) = P(M ∩ LS ∩ PR) + P(M ∩ SS ∩ PR) = .05 + .07 = .12. 
 
c. P(SS) = sum of 9 probabilities in the SS table = .56. P(LS) = 1 – .56 = .44. 
 
d. From the two tables, P(M) = .08 + .07 + .12 + .10 + .05 + .07 = .49. P(Pr) = .02 + .07 + .07 + .02 + .05 

+ .02 = .25. 

e. P(M|SS ∩ Pl) = ( ) .08 .533
( ) .04 .08 .03

P
P
∩

= =
+

∩
∩ +

M SS Pl
SS Pl

. 

f. P(SS|M ∩ Pl) = ( ) .08 .444
( ) .08 .10

P
P

∩ ∩
= =

∩ +
SS M Pl

M Pl
. P(LS|M ∩ Pl) = 1 – P(SS|M ∩ Pl) = 1 – .444 = 

.556. 
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51.  

a. Let A = child has a food allergy, and R = child has a history of severe reaction. We are told that P(A) = 
.08 and P(R | A) = .39. By the multiplication rule, P(A ∩ R) = P(A) × P(R | A) = (.08)(.39) = .0312. 
 

b. Let M = the child is allergic to multiple foods. We are told that P(M | A) = .30, and the goal is to find 
P(M).  But notice that M is actually a subset of A: you can’t have multiple food allergies without 
having at least one such allergy! So, apply the multiplication rule again: 
P(M) = P(M ∩ A) = P(A) × P(M | A) = (.08)(.30) = .024. 

 
52. We know that P(A1 ∪ A2) = .07 and P(A1 ∩ A2) = .01, and that P(A1) = P(A2) because the pumps are 

identical. There are two solution methods. The first doesn’t require explicit reference to q or r: Let A1 be 
the event that #1 fails and A2 be the event that #2 fails.   
Apply the addition rule: P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) ⇒ .07 = 2P(A1)  – .01 ⇒ P(A1) = .04. 
 
Otherwise, we assume that P(A1) = P(A2) = q and that P(A1 | A2) = P(A2 | A1) = r (the goal is to find q). 
Proceed as follows:  .01 = P(A1 ∩ A2) = P(A1) P(A2 | A1) = qr and .07 = P(A1 ∪ A2) = 

1 2 1 2 1 2) (( )( )P A P AA A P A A′∩ + ∩ + ∩′  = .01 + q(1 – r) + q(1 – r) ⇒ q(1 – r) = .03. 
These two equations give 2q – .01 = .07, from which q = .04 (and r = .25). 

 

53. P(B|A) = 
)(
)(

)(
)(

AP
BP

AP
BAP

=
∩   (since B is contained in A, A ∩ B = B) 

= 0833.
60.
05.

=
 

 
54.  

a. P(A2 | A1) = 50.
22.
11.

)(
)(

1

21 ==
∩
AP

AAP
. If the firm is awarded project 1, there is a 50% chance they will 

also be awarded project 2. 
 

b. P(A2 ∩ A3 | A1) = 0455.
22.
01.

)(
)(

1

321 ==
∩∩

AP
AAAP

. If the firm is awarded project 1, there is a 4.55% 

chance they will also be awarded projects 2 and 3. 
 

c. 
)(

)]()[(
)(

)]([
)|(

1

3121

1

321
132 AP

AAAAP
AP

AAAP
AAAP

∩∪∩
=

∪∩
=∪  

682.
22.
15.

)(
)()()(

1

3213121 ==
∩∩−∩+∩

=
AP

AAAPAAPAAP
. If the firm is awarded project 1, there is 

a 68.2% chance they will also be awarded at least one of the other two projects. 
 

d. 0189.
53.
01.

)(
)(

)|(
321

321
321321 ==

∪∪
∩∩

=∪∪∩∩
AAAP
AAAP

AAAAAAP . If the firm is awarded at least one 

of the projects, there is a 1.89% chance they will be awarded all three projects. 
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55. Let A = {carries Lyme disease} and B = {carries HGE}. We are told P(A) = .16, P(B) = .10, and P(A ∩ B | 

A ∪ B) = .10. From this last statement and the fact that A∩B is contained in A∪B,  

.10 = ( )
( )

P A B
P A B

∩
∪

⇒ P(A ∩ B) = .10P(A ∪ B) = .10[P(A) + P(B) – P(A ∩ B)] = .10[.10 + .16 – P(A ∩ B)] ⇒ 

1.1P(A ∩ B) = .026 ⇒ P(A ∩ B) = .02364. 

Finally, the desired probability is P(A | B) = ( ) .02364
( ) .10

P A B
P B
∩

= = .2364. 

 
 

56. 1
)(
)(

)(
)()(

)(
)(

)(
)()|()|( ==

∩′+∩
=

∩′
+

∩
=′+

BP
BP

BP
BAPBAP

BP
BAP

BP
BAPBAPBAP  

 
 
57. P(B | A) > P(B) iff P(B | A) + P(B′ | A) > P(B) + P(B′|A) iff 1 > P(B) + P(B′|A) by Exercise 56 (with the 

letters switched). This holds iff 1 – P(B) > P(B′ | A) iff P(B′) > P(B′ | A), QED. 
 
 

58. 
)(

)]()[(
)(

))[()|(
CP

CBCAP
CP

CBAPCBAP ∩∪∩
=

∩∪
=∪

)(
)()()(

CP
CBAPCBPCAP ∩∩−∩+∩

=  = P(A | 

C) + P(B | C) – P(A ∩ B | C) 
 
59. The required probabilities appear in the tree diagram below. 

a. P(A2 ∩ B) = .21. 
 
b. By the law of total probability, P(B) = P(A1 ∩ B) + P(A2 ∩ B) + P(A3 ∩ B) = .455. 
 

c. Using Bayes’ theorem, P(A1 | B) = 264.
455.
12.

)(
)( 1 ==

∩
BP

BAP
; P(A2 | B) = 462.

455.
21.

= ; P(A3 | B) = 1 – 

.264 – .462 = .274. Notice the three probabilities sum to 1. 

1 11.4 .3 .12 ( ) ( ) ( | )P A B P A P B A× = = ∩ =

)(21.6.35. 2 BAP ∩==×

)(125.5.25. 3 BAP ∩==×
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60. The tree diagram below shows the probability for the four disjoint options; e.g., P(the flight is discovered 

and has a locator) = P(discovered)P(locator | discovered) = (.7)(.6) = .42. 

 

a. P(not discovered | has locator) = (not discovered has locator) .03 .067
(has locator) .03 .42

P
P

∩
= =

+
. 

 

b. P(discovered | no locator) = (discovered no locator) .28 .509
(no locator) .55

P
P

∩
= = . 

 
61. The initial (“prior”) probabilities of 0, 1, 2 defectives in the batch are .5, .3, .2. Now, let’s determine the 

probabilities of 0, 1, 2 defectives in the sample based on these three cases. 
• If there are 0 defectives in the batch, clearly there are 0 defectives in the sample.  
P(0 def in sample | 0 def in batch) = 1. 
• If there is 1 defective in the batch, the chance it’s discovered in a sample of 2 equals 2/10 = .2, and the 

probability it isn’t discovered is 8/10 = .8.  
P(0 def in sample | 1 def in batch) = .8, P(1 def in sample | 1 def in batch) = .2. 
• If there are 2 defectives in the batch, the chance both are discovered in a sample of 2 equals 

2 1 .022
10 9

× = ; the chance neither is discovered equals 8 7 .622
10 9

× = ; and the chance exactly 1 is 

discovered equals 1 – (.022 + .622) = .356. 
P(0 def in sample | 2 def in batch) = .622, P(1 def in sample | 2 def in batch) = .356,  
P(2 def in sample | 2 def in batch) = .022. 
 
These calculations are summarized in the tree diagram below. Probabilities at the endpoints are 
intersectional probabilities, e.g. P(2 def in batch ∩ 2 def in sample) = (.2)(.022) = .0044. 
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a. Using the tree diagram and Bayes’ rule, 

P(0 def in batch | 0 def in sample) = 578.
1244.24.5.

5.
=

++
 

P(1 def in batch | 0 def in sample) = 278.
1244.24.5.

24.
=

++
 

P(2 def in batch | 0 def in sample) = 144.
1244.24.5.

1244.
=

++
 

 
b. P(0 def in batch | 1 def in sample) = 0 

P(1 def in batch | 1 def in sample) = 457.
0712.06.

06.
=

+
 

P(2 def in batch | 1 def in sample) = 543.
0712.06.

0712.
=

+
 

 
 
62. Let B = blue cab was involved, G = B′ = green cab was involved, and W = witness claims to have seen a 

blue cab. Before any witness statements, P(B) = .15 and P(G). The witness’ reliability can be coded as 
follows: P(W | B) = .8 (correctly identify blue), P(W′ | G) = .8 (correctly identify green), and by taking 
complements P(W′ | B) = P(W | G) = .2 (the two ways to mis-identify a color at night). 
The goal is to determine P(B | W), the chance a blue cab was involved given that’s what the witness claims 
to have seen. Apply Bayes’ Theorem: 

( ) ( | ) (.15)(.8)( | )
( ) ( | ) ( ) ( | ) (.15)(.8) (.85)(.2)

P B P W BP B W
P B P W B P B P W B

= =
′ ′+ +

 = .4138. 

The “posterior” probability that the cab was really blue is actually less than 50%.  That’s because there are 
so many more green cabs on the street, that it’s more likely the witness mis-identified a green cab (.85 × .2) 
than that the witness correctly identified a blue cab (.15 × .8). 
 

63.  
a.  

 
b. From the top path of the tree diagram, P(A ∩ B ∩ C) = (.75)(.9)(.8) = .54. 
 
c. Event B ∩ C occurs twice on the diagram: P(B ∩ C) = P(A ∩ B ∩ C) + P(A′ ∩ B ∩ C) = .54 + 

(.25)(.8)(.7) = .68. 
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d. P(C) = P(A ∩ B ∩ C) + P(A′ ∩ B ∩ C) + P(A ∩ B′ ∩ C) + P(A′ ∩ B′ ∩ C) = .54 + .045 + .14 + .015 = 
.74. 

e. Rewrite the conditional probability first: P(A | B ∩ C) = 7941.
68.
54.

)(
)(

==
∩
∩∩
CBP

CBAP . 

 
 

64. A tree diagram can help. We know that P(short) = .6, P(medium) = .3, P(long) = .1; also, P(Word | short) = 
.8, P(Word | medium) = .5, P(Word | long) = .3. 

 
a. Use the law of total probability: P(Word) = (.6)(.8) + (.3)(.5) + (.1)(.3) = .66. 
 

b. P(small | Word) = (small Word) (.6)(.8)
(Word) .66

P
P

∩
= = .727. Similarly, P(medium | Word) = (.3)(.5)

.66
= .227, 

and P(long | Word) = .045. (These sum to .999 due to rounding error.) 
 

65. A tree diagram can help. We know that P(day) = .2, P(1-night) = .5, P(2-night) = .3; also, P(purchase | day) 
= .1, P(purchase | 1-night) = .3, and P(purchase | 2-night) = .2. 
 

Apply Bayes’ rule: e.g., P(day | purchase) =  (day purchase) (.2)(.1)
(purchase) (.2)(.1) (.5)(.3) (.3)(.2)

P
P

∩
=

+ +
  = .02

.23
= .087. 

Similarly, P(1-night | purchase) = (.5)(.3)
.23

= .652 and P(2-night | purchase) = .261. 

 
66. Let E, C, and L be the events associated with e-mail, cell phones, and laptops, respectively. We are told 

P(E) = 40%, P(C) = 30%, P(L) = 25%, P(E∩C) = 23%, P(E′∩C′∩L′) = 51%,   P(E | L) = 88%, and P(L | 
C) = 70%. 

 
a. P(C | E) = P(E ∩ C)/P(E) = .23/.40 = .575. 
 
b. Use Bayes’ rule: P(C | L) = P(C ∩ L)/P(L) = P(C)P(L | C)/P(L) = .30(.70)/.25 = .84. 
 
c. P(C|E ∩ L) = P(C ∩ E ∩ L)/P(E ∩ L).  

For the denominator, P(E ∩ L) = P(L)P(E | L) = (.25)(.88) = .22.  
For the numerator, use P(E∪C∪L) = 1 – P(E′∩C′∩L′) = 1 – .51 = .49 and write 
P(E∪C∪L) = P(C) + P(E) + P(L) – P(E∩C) – P(C∩L) – P(E∩L) + P(C∩E∩L) 
⇒ .49 = .30 + .40 + .25 – .23 – .30(.70) – .22 + P(C∩E∩L) ⇒ P(C∩E∩L) = .20. 
So, finally, P(C|E ∩ L) = .20/.22 = .9091. 
 

 
67. Let T denote the event that a randomly selected person is, in fact, a terrorist. Apply Bayes’ theorem, using 

P(T) = 1,000/300,000,000 = .0000033: 

P(T | +) = ( ) ( | )
( ) ( | ) ( ) ( | )

P T P T
P T P T P T P T

+
′ ′+ + +

= 
)999.1)(0000033.1()99)(.0000033(.

)99)(.0000033(.
−−+

= .003289. That is to 

say, roughly 0.3% of all people “flagged” as terrorists would be actual terrorists in this scenario. 
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68. Let’s see how we can implement the hint. If she’s flying airline #1, the chance of 2 late flights is 
(30%)(10%) = 3%; the two flights being “unaffected” by each other means we can multiply their 
probabilities. Similarly, the chance of 0 late flights on airline #1 is (70%)(90%) = 63%. Since percents add 
to 100%, the chance of exactly 1 late flight on airline #1 is 100% – (3% + 63%) = 34%. A similar approach 
works for the other two airlines: the probability of exactly 1 late flight on airline #2 is 35%, and the chance 
of exactly 1 late flight on airline #3 is 45%. 
 
The initial (“prior”) probabilities for the three airlines are P(A1) = 50%, P(A2) = 30%, and P(A3) = 20%. 
Given that she had exactly 1 late flight (call that event B), the conditional (“posterior”) probabilities of the 
three airlines can be calculated using Bayes’ Rule:  
 

2 2 3

1 1
1

1 1 3

( ) ( | ) (.5)(.34)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) (.5)(.34) (.3)(.35) (.2)(.45)

( P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ + + +

= .170
.365

= 

.4657; 
2 2

2
2 31 321

( ) ( | ) (.3)(.35)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5

(
6

P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ +

= .2877; and 

3 3
3

2 31 321

( ) ( | ) (.2)(.45)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5

(
6

P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ +

= .2466. 

Notice that, except for rounding error, these three posterior probabilities add to 1. 
 
The tree diagram below shows these probabilities. 
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69. The tree diagram below summarizes the information in the exercise (plus the previous information in 

Exercise 59). Probabilities for the branches corresponding to paying with credit are indicated at the far 
right. (“extra” = “plus”) 

a. P(plus ∩ fill ∩ credit) = (.35)(.6)(.6) = .1260. 
 
b. P(premium ∩ no fill ∩ credit) = (.25)(.5)(.4) = .05. 
 
c. From the tree diagram, P(premium ∩ credit) = .0625 + .0500 = .1125. 
 
d. From the tree diagram, P(fill ∩ credit) = .0840 + .1260 + .0625 = .2725. 
 
e. P(credit) = .0840 + .1400 + .1260 + .0700 + .0625 + .0500 = .5325. 
 

f. P(premium | credit) = (premium credit) .1125 .2113
(credit) .5325

P
P

∩
= = . 
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Section 2.5 
 
70. Using the definition, two events A and B are independent if P(A | B) = P(A); 

P(A | B) = .6125; P(A) = .50; .6125 ≠ .50, so A and B are not independent. 
Using the multiplication rule, the events are independent if P(A ∩ B)=P(A)P(B); 
P(A ∩ B) = .25; P(A)P(B) = (.5)(.4) = .2.  .25 ≠ .2, so A and B are not independent. 

 
71.  

a. Since the events are independent, then A′ and B′ are independent, too. (See the paragraph below 
Equation 2.7.) Thus, P(B′|A′) = P(B′) = 1 – .7 = .3. 

 
b. Using the addition rule, P(A ∪ B) = P(A) + P(B) – P(A ∩ B) =.4 + .7 – (.4)(.7) = .82. Since A and B are 

independent, we are permitted to write P(A ∩ B) = P(A)P(B) = (.4)(.7). 
 

c. P(AB′ | A ∪ B) = ( ( )) ( ( ) ( ) (.4)(1 .7) .12 .146
( ) ( )

)
( ) .8 .822

P A PP AB A B P AB
P A B

B
P AP A B B

′ ′∩ ∪
= = = = =

∪
′

∪∪
− . 

 
 
72. P(A1 ∩ A2) = .11 while P(A1)P(A2) = .055, so A1 and A2 are not independent. 

P(A1 ∩ A3) = .05 while P(A1)P(A3) = .0616, so A1 and A3 are not independent. 
P(A2 ∩ A3) = .07 and P(A2)P(A3) = .07, so A2 and A3 are independent. 

 
 
73. From a Venn diagram, P(B) = P(A′ ∩ B) + P(A ∩ B) = P(B) ⇒ P(A′ ∩ B) = P(B) –  P(A ∩ B). If A and B 

are independent, then P(A′ ∩ B) = P(B) – P(A)P(B) = [1 – P(A)]P(B) = P(A′)P(B). Thus, A′ and B are 
independent. 

Alternatively, ( ) ( ) ( )( | )
( ) ( )

P A B P B P A BP A B
P B P B
′∩ − ∩′ = = = ( ) ( ) ( )

( )
P B P A P B

P B
−

 
= 1 – P(A) = P(A′). 

 
 
74. Using subscripts to differentiate between the selected individuals,  

P(O1 ∩ O2) = P(O1)P(O2) = (.45)(.45) = .2025. 
P(two individuals match) = P(A1 ∩ A2) + P(B1 ∩ B2) + P(AB1 ∩ AB2) + P(O1∩O2) =  
.402 + .112 + .042 + .452 = .3762. 

 
75. Let event E be the event that an error was signaled incorrectly.   

We want P(at least one signaled incorrectly) = P(E1 ∪ … ∪ E10). To use independence, we need 
intersections, so apply deMorgan’s law: = P(E1 ∪ …∪ E10) = 1 – 1 10 )(P EE ′∩ ∩′

 . P(E′) = 1 – .05 = .95, 
so for 10 independent points, 1 10 )(P EE ′∩ ∩′

 = (.95)…(.95) = (.95)10. Finally, P(E1 ∪ E2  ∪ …∪ E10) =    
1 – (.95)10 = .401.   Similarly, for 25 points, the desired probability is 1 – (P(E′))25 = 1 – (.95)25 = .723. 
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76. Follow the same logic as in Exercise 75: If the probability of an event is p, and there are n independent 
“trials,” the chance this event never occurs is (1 – p)n, while the chance of at least one occurrence is            
1 – (1 – p)n. With p = 1/9,000,000,000 and n = 1,000,000,000, this calculates to 1 – .9048 = .0952.   
 
Note: For extremely small values of p, (1 – p)n ≈ 1 – np. So, the probability of at least one occurrence under 
these assumptions is roughly 1 – (1 – np) = np.  Here, that would equal 1/9. 

 
77. Let p denote the probability that a rivet is defective. 
 

a. .15 = P(seam needs reworking) = 1 – P(seam doesn’t need reworking) = 
1 – P(no rivets are defective) = 1 – P(1st isn’t def ∩ … ∩ 25th isn’t def) = 
1 – (1 – p)…(1 – p) = 1 – (1 – p)25.  
Solve for p: (1 – p)25 = .85 ⇒ 1 – p = (.85)1/25 ⇒ p = 1 – .99352 = .00648.  

 
b. The desired condition is .10 = 1 – (1 – p)25. Again, solve for p: (1 – p)25 = .90 ⇒  

p = 1 – (.90)1/25 = 1 – .99579 = .00421.  
 
 
78. P(at least one opens) = 1 – P(none open) = 1 – (.04)5 = .999999897. 

P(at least one fails to open) = 1 – P(all open) = 1 – (.96)5 = .1846. 
 
 
79. Let A1 = older pump fails, A2 = newer pump fails, and x = P(A1 ∩ A2).  The goal is to find x. From the Venn 

diagram below, P(A1) = .10 + x and P(A2) = .05 + x. Independence implies that x = P(A1 ∩ A2) = P(A1)P(A2) 
= (.10 + x)(.05 + x) .  The resulting quadratic equation, x2 – .85x + .005 = 0, has roots x = .0059 and x = 
.8441.  The latter is impossible, since the probabilities in the Venn diagram would then exceed 1.  
Therefore, x = .0059. 

 
 

.10 .15 x 

A1 A2 
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80. Let Ai denote the event that component #i works (i = 1, 2, 3, 4). Based on the design of the system, the 

event “the system works” is 1 2 3 4) ( )( A A AA ∪ ∪ ∩ . We’ll eventually need 1 2 )(P A A∪ , so work that out 
first: 1 2 1 2 1 2) ( ) ( ) ( ) (.9) (.9) (.9)(.9 .( ) 99A P A P A P A AP A ∪ = + − ∩ = + − = . The third term uses 
independence of events. Also, 3 4( )P A A∩ = (.8)(.8) = .64, again using independence.  

 
Now use the addition rule and independence for the system: 

 
1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

) ( )) ( ) ( ) ) ( ))
( ) ( ) ) ( )

(.99) (.64) (.99)(.6

(( ((

4) .9964
(

A A A P A P A A A A A
P A P A A

P A A P A
A AP P AA A

∪ ∪ ∩ = ∪ + ∩ − ∪ ∩ ∩
= ∪ + ∩ − ∪ × ∩
= + − =

 

(You could also use deMorgan’s law in a couple of places.) 
 
81. Using the hints, let P(Ai) = p, and x = p2. Following the solution provided in the example, 

P(system lifetime exceeds t0) = p2 + p2 – p4 = 2p2 – p4 = 2x – x2.  Now, set this equal to .99:  
2x – x2 = .99 ⇒ x2 – 2x + .99 = 0 ⇒ x = 0.9 or 1.1 ⇒ p = 1.049 or .9487.  Since the value we want is a 
probability and cannot exceed 1, the correct answer is p = .9487. 

 
 
82. A = {(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)} ⇒ P(A) = 6

36
1
6= ; B = {(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)} ⇒   P(B) = 6

1 ; 

and C = {(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)} ⇒ P(C) = 6
1 .    

A∩B = {(3,4)} ⇒ P(A∩B) = 36
1  = P(A)P(B); A∩C = {(3,4)} ⇒ P(A∩C) = 36

1 = P(A)P(C); and B∩C = 

{(3,4)} ⇒ P(B∩C) = 36
1 = P(B)P(C). Therefore, these three events are pairwise independent. 

However, A∩B∩C = {(3,4)} ⇒ P(A∩B∩C) = 36
1 , while P(A)P(B)P(C) =   =

1 1 1 1
6 6 6 216⋅ ⋅ = , so P(A∩B∩C) ≠ 

P(A)P(B)P(C) and these three events are not mutually independent. 
 
 
83. We’ll need to know P(both detect the defect) = 1 – P(at least one doesn’t) = 1 – .2 = .8. 
 

a. P(1st detects ∩ 2nd doesn’t) = P(1st detects) – P(1st does ∩ 2nd does) = .9 – .8 = .1. 
Similarly, P(1st doesn’t ∩ 2nd does) = .1, so P(exactly one does)= .1 + .1= .2. 
 

b. P(neither detects a defect) = 1 – [P(both do) + P(exactly 1 does)] = 1 – [.8+.2] = 0. That is, under this 
model there is a 0% probability neither inspector detects a defect. As a result, P(all 3 escape) = 
(0)(0)(0) = 0. 
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84. We’ll make repeated use of the independence of the Ais and their complements. 
a. 1 2 3 1 2 3) ( ) ( ) ( )( A A P A P AA P AP ∩ ∩ = = (.95)(.98)(.80) = .7448. 

 
b. This is the complement of part a, so the answer is 1 – .7448 = .2552. 
 
c. 1 2 3 1 2 3) ( ) ( ) (( )A A P A P A P AP A ′ ′ ′ ′ ′∩ ∩ =′ = (.05)(.02)(.20) = .0002. 

 
d. 1 2 3 1 2 3) ( ) ( ( )( )A A P A P A PA AP ′ ′∩ ∩ =  = (.05)(.98)(.80) = .0392. 

 
e. 1 2 3 1 2 3 1 2 3] ] ])([ [ [A A AP A A AA A A′ ′∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩′ = (.05)(.98)(.80) + (.95)(.02)(.80) + (.95)(.98)(.20) 

= .07302. 
 
f. This is just a little joke — we’ve all had the experience of electronics dying right after the warranty 

expires!  
 
85.  

a. Let D1 = detection on 1st fixation, D2 = detection on 2nd fixation. 
P(detection in at most 2 fixations) = P(D1) + 1 2( )P D D′∩ ; since the fixations are independent,  

P(D1) + 1 2( )P D D′∩ = P(D1) + 1( )P D′ P(D2) = p + (1 – p)p = p(2 – p). 
 

b. Define D1, D2, … , Dn as in a.  Then P(at most n fixations) = 
P(D1) + 1 2( )P D D′∩ + 1 2 3( )D DP D′∩ ∩′ + … + 1 2 1( )n nP D D DD −′ ′∩ ∩ ∩ ∩′

 =  
p + (1 – p)p + (1 – p)2p + … + (1 – p)n–1p = p[1 + (1 – p) + (1 – p)2 + … + (1 – p)n–1] = 

1 (1 ) 1 (1 )
1 (1 )

·
n

npp p
p

− −
= − −

− −
. 

Alternatively, P(at most n fixations) = 1 – P(at least n+1 fixations are required) = 
1 – P(no detection in 1st n fixations) = 1 – 1 2 )( nD DP D ′ ′∩ ∩ ∩′

 = 1 – (1 – p)n. 
 

c. P(no detection in 3 fixations) = (1 – p)3. 
 

d. P(passes inspection) = P({not flawed} ∪ {flawed and passes}) 
= P(not flawed) + P(flawed and passes) 
= .9 + P(flawed) P(passes | flawed) = .9 + (.1)(1 – p)3. 

 

e. Borrowing from d, P(flawed | passed) = 
3

3

(flawed passed) .1(1 )
(passed) .9 .1(1 )

P p
P p

∩ −
=

+ −
. For p = .5,  

P(flawed | passed) = 
3

3

.1(1 .5) .0137
.9 .1(1 .5)

−
=

+ −
. 
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86.  

a. P(A) = 2,000
10,000

= .2. Using the law of total probability, ( ) ( ) ( | ) ( ) ( | )P B P A P B A P A P B A′ ′= +  = 

1,999 2,000(.2) (.8)
9,999 9,999

+ = .2 exactly. That is, P(B) = P(A) = .2. Finally, use the multiplication rule: 

1,999) ( ) ( | ) (.2)
9,999

( B P A P B AP A∩ = × = = .039984. Events A and B are not independent, since P(B) = 

.2 while 1,999| ) .19992
9 999

(
,

P B A = = , and these are not equal. 

 
b. If A and B were independent, we’d have ) ( ) ( ) (.2)(.2) .0( 4B P A P BP A∩ = × = = . This is very close to 

the answer .039984 from part a. This suggests that, for most practical purposes, we could treat events 
A and B in this example as if they were independent. 

 
c. Repeating the steps in part a, you again get P(A) = P(B) = .2. However, using the multiplication rule, 

2 1) ( ) ( | )
10

(
9

B P A P B AP A∩ = × = × =.0222. This is very different from the value of .04 that we’d get 

if A and B were independent!  
 

The critical difference is that the population size in parts a-b is huge, and so the probability a second 
board is green almost equals .2 (i.e., 1,999/9,999 = .19992 ≈ .2). But in part c, the conditional 
probability of a green board shifts a lot: 2/10 = .2, but 1/9 = .1111. 
 

87.  
a. Use the information provided and the addition rule:  

P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) ⇒ P(A1 ∩ A2) = P(A1) + P(A2) – P(A1 ∪ A2) = .55 + .65 – .80 
= .40. 
 

b. By definition, 2 3
2 3

3

( ) .40( |
( ) .70

) P A AA
P A

P A ∩
== = .5714. If a person likes vehicle #3, there’s a 57.14% 

chance s/he will also like vehicle #2. 
 

c. No. From b, 2 3( )|P A A = .5714 ≠ P(A2) = .65. Therefore, A2 and A3 are not independent. Alternatively, 
P(A2 ∩ A3) = .40 ≠ P(A2)P(A3) = (.65)(.70) = .455. 
 

d. The goal is to find 2 3 1| )( AP A A′∪ , i.e. 2 3 1

1

([ ] )
( )
A AP A

P A
′∪ ∩

′
. The denominator is simply 1 – .55 = .45. 

There are several ways to calculate the numerator; the simplest approach using the information 
provided is to draw a Venn diagram and observe that 2 3 1 1 2 3 1) (([ (] ) )A A P A A PA A AP ′∪ ∩ = ∪ ∪ − = 

.88 – .55 = .33. Hence, 2 3 1| )( AP A A′∪  = .33
.45

= .7333. 
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88. Let D = patient has disease, so P(D) = .05. Let ++ denote the event that the patient gets two independent, 

positive tests. Given the sensitivity and specificity of the test, P(++ | D) = (.98)(.98) = .9604, while           
P(++ | D′) = (1 – .99)(1 – .99) = .0001. (That is, there’s a 1-in-10,000 chance of a healthy person being mis-
diagnosed with the disease twice.) Apply Bayes’ Theorem: 
 

( ) ( | ) (.05)(.9604)( | )
( ) ( | ) ( ) ( | ) (.05)(.9604) (.95)(.0001)

P D P DP D
P D P D P D P D

++
++ = =

′ ′++ + ++ +
 = .9980 

 
 

89. The question asks for P(exactly one tag lost | at most one tag lost) = 1 2 1 2 1 2((( ) ))) | (C C CC CP C′ ′∩ ∪ ∩ ∩ ′ . 
Since the first event is contained in (a subset of) the second event, this equals 

1 2 1 2

1 2

(( )
)(

( )
( )

)C C
C

P C
P

C
C

′∩ ∪ ∩
′∩

′
= 1 2 1 2 1 2 1 2

1 2 1 2

( ( (
1

) ( ) ) ( ) ) ( )
) ( )( 1 ) (

P P CC C P C C P C P CP C
P C P CC P C

′
=

− −
′ ′ ′∩ + ∩ +

∩
by independence = 

2 21
(1 ) (1 ) 2 (1 ) 2

1 1
π π π π π π π

π π π
=

−
−

=
−
+ −

+
− . 
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Supplementary Exercises 
 
90.  

a. 
10
3

 
 
 

= 120. 

 
b. There are 9 other senators from whom to choose the other two subcommittee members, so the answer 

is 1 × 
9
2
 
 
 

= 36. 

 
c. There are 120 possible subcommittees. Among those, the number which would include none of the 5 

most senior senators (i.e., all 3 members are chosen from the 5 most junior senators) is 
5
3
 
 
 

 = 10. 

Hence, the number of subcommittees with at least one senior senator is 120 – 10 = 110, and the chance 
of this randomly occurring is 110/120 = .9167. 
 

d. The number of subcommittees that can form from the 8 “other” senators is 
8
3
 
 
 

 = 56, so the 

probability of this event is 56/120 = .4667. 
 

 
91.  

a. P(line 1) = 500
1500

= .333;   

P(crack) = ( ) ( ) ( ).50 500 .44 400 .40 600 666
1500 1500

+ +
= = .444. 

 
b. This is one of the percentages provided: P(blemish | line 1) = .15. 
 

c. P(surface defect) = ( ) ( ) ( ).10 500 .08 400 .15 600 172
1500 1500

+ +
= ; 

P(line 1 ∩ surface defect) = ( ).10 500 50
1500 1500

= ; 

so, P(line 1 | surface defect) = 50 /1500
172 /

5
1 00 25

0
17

= = .291. 

 
92.  

a. He will have one type of form left if either 4 withdrawals or 4 course substitutions remain. This means 
the first six were either 2 withdrawals and 4 subs or 6 withdrawals and 0 subs; the desired probability 

is 
6 4 6
2 4 6

1

4
0

0
6

     
+     

     
 
 
 

 = 16
210

=.0762. 



Chapter 2:  Probability 

 81 

 
b. He can start with the withdrawal forms or the course substitution forms, allowing two sequences: W-C-

W-C or C-W-C-W. The number of ways the first sequence could arise is (6)(4)(5)(3) = 360, and the 
number of ways the second sequence could arise is (4)(6)(3)(5) = 360, for a total of 720 such 
possibilities. The total number of ways he could select four forms one at a time is P4,10 = (10)(9)(8)(7) 
= 5040. So, the probability of a perfectly alternating sequence is 720/5040 = .143. 

 
93. Apply the addition rule: P(A∪B) = P(A) + P(B) – P(A ∩ B) ⇒ .626 = P(A) + P(B) – .144. Apply 

independence: P(A ∩ B) = P(A)P(B) = .144.  
So, P(A) + P(B) = .770 and P(A)P(B) = .144.    
Let x = P(A) and y = P(B). Using the first equation, y = .77 – x, and substituting this into the second 
equation yields x(.77 –  x) = .144 or x2 – .77x + .144 = 0.  Use the quadratic formula to solve:   

x =
2.77 ( .77) (4)(1)(.144) .77 .13

2(1) 2
± − − ±

=  = .32 or .45. Since x = P(A) is assumed to be the larger 

probability, x = P(A) = .45 and y = P(B) = .32. 
 

 
94. The probability of a bit reversal is .2, so the probability of maintaining a bit is .8. 

a. Using independence, P(all three relays correctly send 1) = (.8)(.8)(.8) = .512. 
 
b. In the accompanying tree diagram, each .2 indicates a bit reversal (and each .8 its opposite). There are 

several paths that maintain the original bit: no reversals or exactly two reversals (e.g., 1 → 1 → 0 → 1, 
which has reversals at relays 2 and 3). The total probability of these options is .512 + (.8)(.2)(.2) + 
(.2)(.8)(.2) + (.2)(.2)(.8) = .512 + 3(.032) = .608. 

 
 

c. Using the answer from b, P(1 sent | 1 received) = 1 received)(1 sent
(1 received)

P
P

∩ = 

(1 received | 1 sent)
(1 received | 1 sent)

(1 sent)
(1 sent) (0 se (1 received n | 0 sen )t) t

P
PP P

P
P+

= (.7)(.608) .4256
(.7)(.608) (.3)(.392) .5432

=
+

= 

.7835. 
In the denominator, P(1 received | 0 sent) = 1 – P(0 received | 0 sent) = 1 – .608, since the answer from 
b also applies to a 0 being relayed as a 0. 
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95.  
a. There are 5! = 120 possible orderings, so P(BCDEF) = 1

120 = .0833. 
 
b. The number of orderings in which F is third equals 4×3×1*×2×1 = 24 (*because F must be here),  so 

P(F is third) = 24
120 = .2.  Or more simply, since the five friends are ordered completely at random, there 

is a ⅕ chance F is specifically in position three. 
 

c. Similarly, P(F last) = 4 3 2 1 1
120

× × × × = .2. 

 

d. P(F hasn’t heard after 10 times) = P(not on #1 ∩ not on #2 ∩ … ∩  not on #10) = 
104 4

5 5
4
5

 × × =  
 

 = 

.1074. 
 
 

96. Palmberg equation: ( / *)( )
1 ( / *)d

c cc
c c

P
β

β=
+

 

a. ( * / *) 1 1( *) .5
1 ( * / *) 1 1 1 1d

c cc
c c

P
β β

β β= = = =
+ + +

. 

 
b. The probability of detecting a crack that is twice the size of the “50-50” size c* equals 

(2 * / *) 2(2 *)
1 (2 * / *) 1 2dP c cc

c c

β β

β β= =
+ +

. When β = 4, 
4

4

2 16(2 *)
1 2 17dP c = =
+

= .9412. 

 
c. Using the answers from a and b, P(exactly one of two detected) = P(first is, second isn’t) + P(first 

isn’t, second is) = (.5)(1 – .9412) + (1 – .5)(.9412) = .5. 
 

d. If c = c*, then Pd(c) = .5 irrespective of β. If c < c*, then c/c* < 1 and Pd(c) → 0
0 1+

= 0 as β → ∞. 

Finally, if c > c* then c/c* > 1 and, from calculus,  Pd(c) → 1 as β → ∞. 
 
97. When three experiments are performed, there are 3 different ways in which detection can occur on exactly 

2 of the experiments: (i) #1 and #2 and not #3; (ii) #1 and not #2 and #3; and (iii) not #1 and #2 and #3.  If 
the impurity is present, the probability of exactly 2 detections in three (independent) experiments is 
(.8)(.8)(.2) + (.8)(.2)(.8) + (.2)(.8)(.8) = .384.  If the impurity is absent, the analogous probability is 
3(.1)(.1)(.9) = .027.  Thus, applying Bayes’ theorem, P(impurity is present | detected in exactly 2 out of 3) 

= (detected in exactly 2 present)
(detected in exactly 2)

P
P

∩ = (.384)(.4)
(.384)(.4) (.027)(.6)+

= .905. 
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98. Our goal is to find P(A ∪ B ∪ C ∪ D ∪ E). We’ll need all of the following probabilities: 

P(A) = P(Allison gets her calculator back) = 1/5. This is intuitively obvious; you can also see it by writing 
out the 5! = 120 orderings in which the friends could get calculators (ABCDE, ABCED, …, EDCBA) and 
observe that 24 of the 120 have A in the first position. So, P(A) = 24/120 = 1/5. By the same reasoning, 
P(B) = P(C) = P(D) = P(E) = 1/5. 
P(A ∩ B) = P(Allison and Beth get their calculators back) = 1/20. This can be computed by considering all 
120 orderings and noticing that six — those of the form ABxyz — have A and B in the correct positions. 
Or, you can use the multiplication rule: P(A ∩ B) = P(A)P(B | A) = (1/5)(1/4) = 1/20.  All other pairwise 
intersection probabilities are also 1/20. 
P(A ∩ B ∩ C) = P(Allison and Beth and Carol get their calculators back) = 1/60, since this can only occur 
if two ways — ABCDE and ABCED — and 2/120 = 1/60. So, all three-wise intersections have probability 
1/60. 
P(A ∩ B ∩ C ∩ D) = 1/120, since this can only occur if all 5 girls get their own calculators back. In fact, all 
four-wise intersections have probability 1/120, as does P(A ∩ B ∩ C ∩ D ∩ E) — they’re the same event. 
 
Finally, put all the parts together, using a general inclusion-exclusion rule for unions: 

) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )
1 1 1 1 1 1 1 1 1 765 10 10

(

5 1 .633
5 20 60 120 2 6120 120 24 1 02

B C D E P A P B P C P D P E
P A B P A C P D E
P A B C P C D E
P A B C D P B C D E
P A B C D E

P A∪ ∪ ∪ ∪ = + + + +
− ∩ − ∩ − − ∩
+ ∩ ∩ + + ∩ ∩
− ∩ ∩ ∩ − − ∩ ∩ ∩
+ ∩ ∩ ∩ ∩

= ⋅ − ⋅ + ⋅ − ⋅ + = − + − + = =







  

 

The final answer has the form 1 1 1 1 1 1 1 1
2 6 24 1! 2! 3! 4! 5!

1 + − = − + − +−  . Generalizing to n friends, the 

probability at least one will get her own calculator back is 11 1 1 1 1( 1)
1! 2! 3! 4! !

n

n
−− + − + + − . 

 
When n is large, we can relate this to the power series for ex evaluated at x = –1: 

0

2 3

1

1

1! 2! 3!
1 1 1 1 1 11
1! 2! 3! 1! 2! 3!

1 1 11
1! 2!

1
!

1

3!

x

k

kx x x

e

e
k

x

e

∞

=

−

−

+ + + ⇒

 + − + = − − + − ⇒  

− =

= =

− +

+

= −

−

∑ 

 



  

So, for large n, P(at least one friend gets her own calculator back) ≈ 1 – e–1 = .632. Contrary to intuition, 
the chance of this event does not converge to 1 (because “someone is bound to get hers back”) or to 0 
(because “there are just too many possible arrangements”). Rather, in a large group, there’s about a 63.2% 
chance someone will get her own item back (a match), and about a 36.8% chance that nobody will get her 
own item back (no match).  
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99. Refer to the tree diagram below. 

 
a. P(pass inspection) = P(pass initially ∪ passes after recrimping) =  

P(pass initially) + P(fails initially ∩ goes to recrimping ∩ is corrected after recrimping) = 
.95 + (.05)(.80)(.60) (following path “bad-good-good” on tree diagram) = .974. 

 

b. P(needed no recrimping | passed inspection) = (passed initially)
(passed inspection)
P

P
= .95 .9754

.974
= . 

 
 
100.  

a. First, the probabilities of the Ai are P(A1) = P(JJ) = (.6)2 = .36; P(A2) = P(MM) = (.4)2 = .16; and              
P(A3) = P(JM or MJ) = (.6)(.4) + (.4)(.6) = .48.    
Second, P(Jay wins | A1) = 1, since Jay is two points ahead and, thus has won; P(Jay wins | A2) = 0, 
since Maurice is two points ahead and, thus, Jay has lost; and P(Jay wins | A3) = p, since at that 
moment the score has returned to deuce and the game has effectively started over. Apply the law of 
total probability: 
  P(Jay wins) = P(A1)P(Jay wins | A1) + P(A2)P(Jay wins | A2) + P(A3)P(Jay wins | A3) 
                  p = (.36)(1) + (.16)(0) + (.48)(p) 

Therefore, p = .36 + .48p; solving for p gives p = .36
1 .48−

 = .6923. 

 

b. Apply Bayes’ rule: P(JJ | Jay wins) = ( ) (Jay wins | )
(Jay wins)

(.36)(1)
.6923

P JJ P JJ
P

=  = .52. 

 
 
101. Let A = 1st functions, B = 2nd functions, so P(B) = .9, P(A ∪ B) = .96, P(A ∩ B)=.75.  Use the addition rule: 

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) ⇒ .96 = P(A) + .9 – .75 ⇒ P(A) = .81. 

Therefore, P(B | A) = ( ) .75
( ) .81

P B A
P A
∩

= = .926. 
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102.  

a. P(F) = 919/2026 = .4536.  P(C) = 308/2026 = .1520. 
 

b. P(F ∩ C) = 110/2026 = .0543.  Since P(F) × P(C) = .4536 × .1520 = .0690 ≠ .0543, we find that 
events F and C are not independent. 
 

c. P(F | C) = P(F ∩ C)/P(C) = 110/308 = .3571. 
 

d. P(C | F) = P(C ∩ F)/P(F) = 110/919 = .1197. 
 

e. Divide each of the two rows, Male and Female, by its row total. 
 
 Blue Brown Green Hazel 
Male .3342 .3180 .1789 .1689 
Female .3906 .3156 .1197 .1741 
 
According to the data, brown and hazel eyes have similar likelihoods for males and females. However, 
females are much more likely to have blue eyes than males (39% versus 33%) and, conversely, males 
have a much greater propensity for green eyes than do females (18% versus 12%). 

 
103. A tree diagram can help here. 

a. P(E1 ∩ L) = P(E1)P(L | E1) = (.40)(.02) = .008. 
 

b. The law of total probability gives P(L) = ∑ P(Ei)P(L | Ei) =  (.40)(.02) + (.50)(.01) + (.10)(.05) = .018. 
 

c. 1 1| ) 1 ( )( |L P LP E E′ ′=′ − = 1 )(1
( )

P E
P L

L′
′
∩

− = 1 1) |(
1 ( )

( )1 P L EP E
P L

′
−

−
= (.40)(.98)1

1 .018
−

−
= .601. 

 
 
104. Let B denote the event that a component needs rework.   By the law of total probability, 

P(B) = ∑ P(Ai)P(B | Ai) = (.50)(.05) + (.30)(.08) + (.20)(.10) = .069. 

Thus, P(A1 | B) = (.50)(.05)
.069  

= .362, P(A2 | B) = (.30)(.08)
.069

= .348, and P(A3 | B) = .290.  

 
 
105. This is the famous “Birthday Problem” in probability. 

a. There are 36510 possible lists of birthdays, e.g. (Dec 10, Sep 27, Apr 1, …). Among those, the number 
with zero matching birthdays is P10,365 (sampling ten birthdays without replacement from 365 days. So, 

P(all different) = 10
10,365

10

(365)(364) (356)
365 (365)
P

=
 = .883. P(at least two the same) = 1 – .883 = .117. 
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b. The general formula is P(at least two the same) = 1 – ,365

365
k

k

P
. By trial and error, this probability equals 

.476 for k = 22 and equals .507 for k = 23. Therefore, the smallest k for which k people have at least a 
50-50 chance of a birthday match is 23. 

 
c. There are 1000 possible 3-digit sequences to end a SS number (000 through 999). Using the idea from 

a, P(at least two have the same SS ending) = 1 – 10,1000
101000

P
= 1 – .956 = .044. 

Assuming birthdays and SS endings are independent, P(at least one “coincidence”) = P(birthday 
coincidence ∪ SS coincidence) = .117 + .044 – (.117)(.044) = .156.  
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106. See the accompanying tree diagram. 

 

a. P(G | R1 < R2 < R3) = .15 .67
.15 .075

=
+

while P(B | R1 < R2 < R3) = .33, so classify the specimen as 

granite. Equivalently, P(G | R1 < R2 < R3) = .67 > ½ so granite is more likely.  
 

b. P(G | R1 < R3 < R2) = .0625 .2941
.2125

=  < ½, so classify the specimen as basalt. 

P(G | R3 < R1 < R2) = .0375 .0667
.5625

= < ½, so classify the specimen as basalt. 

 
c. P(erroneous classification) = P(B classified as G) + P(G classified as B) = 

P(B)P(classified as G | B) + P(G)P(classified as B | G) = 
(.75)P(R1 < R2 < R3 | B) + (.25)P(R1 < R3 < R2 or R3 < R1 < R2 | G) = 
 (.75)(.10) + (.25)(.25 + .15) = .175. 
 

d. For what values of p will P(G | R1 < R2 < R3), P(G | R1 < R3 < R2), and P(G | R3 < R1 < R2) all exceed 
½? Replacing .25 and .75 with p and 1 – p in the tree diagram, 

P(G | R1 < R2 < R3) = .6 .6 .5
.6 .1(1 ) .1 .5

p p
p p p

= >
+ − +

 iff 1
7

p > ; 

P(G | R1 < R3 < R2) = .25 .5
.25 .2(1 )

p
p p

>
+ −

 iff 4
9

p > ; 

P(G | R3 < R1 < R2) = .15 .5
.15 .7(1 )

p
p p

>
+ −

 iff 14
17

p >  (most restrictive). Therefore, one would always 

classify a rock as granite iff 14
17

p > . 
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107. P(detection by the end of the nth glimpse) = 1 – P(not detected in first n glimpses) = 

1 – 1 2 )( nG GP G ′ ′∩ ∩ ∩′
 = 1 – 1 2) ( )( ( ) nP GP G P G′ ′ ′

 = 1 – (1 – p1)(1 – p2) … (1 – pn) = 1 – )1(
1 i

n

i
p−Π

=
. 

 
108.  

a. P(walks on 4th pitch) = P(first 4 pitches are balls) = (.5)4 = .0625. 
 
b. P(walks on 6th pitch) = P(2 of the first 5 are strikes ∩ #6 is a ball) =  

P(2 of the first 5 are strikes)P(#6 is a ball) = 
5
2
 
 
 

(.5)2(.5)3 (.5) = .15625. 

c. Following the pattern from b, P(walks on 5th pitch) = 
4
1
 
 
 

(.5)1(.5)3(.5) = .125. Therefore,  P(batter 

walks) = P(walks on 4th) + P(walks on 5th) + P(walks on 6th) =    
.0625 + .125 + .15625 = .34375. 

d. P(first batter scores while no one is out) = P(first four batters all walk) = (.34375)4 = .014. 
 
109.  

a. P(all in correct room) = 1 1
4! 24
= = .0417. 

 
b. The 9 outcomes which yield completely incorrect assignments are: 2143, 2341, 2413, 3142, 3412, 

3421, 4123, 4321, and 4312, so P(all incorrect) = 9
24

= .375. 

 
110.  

a. P(all full) = P(A ∩ B ∩ C) = (.9)(.7)(.8) = .504. 
P(at least one isn’t full) = 1 –  P(all full) = 1 – .504 = .496. 
 

b. P(only NY is full) = P(A ∩ B′ ∩ C′) = P(A)P(B′)P(C′) = (.9)(1–.7)(1–.8) = .054. 
Similarly, P(only Atlanta is full) = .014 and P(only LA is full) = .024. 
So, P(exactly one full) = .054 + .014 + .024 = .092. 
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111. Note: s = 0 means that the very first candidate interviewed is hired.  Each entry below is the candidate hired 

for the given policy and outcome. 
 

Outcome s = 0 s = 1 s = 2 s = 3 Outcome s = 0 s = 1 s = 2 s = 3 
1234 1 4 4 4 3124 3 1 4 4 
1243 1 3 3 3 3142 3 1 4 2 
1324 1 4 4 4 3214 3 2 1 4 
1342 1 2 2 2 3241 3 2 1 1 
1423 1 3 3 3 3412 3 1 1 2 
1432 1 2 2 2 3421 3 2 2 1 
2134 2 1 4 4 4123 4 1 3 3 
2143 2 1 3 3 4132 4 1 2 2 
2314 2 1 1 4 4213 4 2 1 3 
2341 2 1 1 1 4231 4 2 1 1 
2413 2 1 1 3 4312 4 3 1 2 
2431 2 1 1 1 4321 4 3 2 1 

 
From the table, we derive the following probability distribution based on s: 

s 0 1 2 3 
P(hire #1) 

24
6  

24
11  

24
10  

24
6  

Therefore s = 1 is the best policy. 
 
 
112. P(at least one occurs) = 1 – P(none occur) = 1 – (1 – p1)(1 – p2)(1 – p3)(1 – p4). 

P(at least two occur) = 1 – P(none or exactly one occur) =  
1 – [(1 – p1)(1 – p2)(1 – p3)(1 – p4) + p1(1 – p2)(1 – p3)(1 – p4) + (1 – p1) p2(1 – p3)(1 – p4) +    
(1 – p1)(1 – p2)p3(1 – p4) + (1 – p1)(1 – p2)(1 – p3)p4]. 

 

113. P(A1) = P(draw slip 1 or 4) = ½; P(A2) = P(draw slip 2 or 4) = ½; 
P(A3) = P(draw slip 3 or 4) = ½; P(A1 ∩ A2) = P(draw slip 4) = ¼; 
P(A2 ∩ A3) = P(draw slip 4) = ¼;  P(A1 ∩ A3) = P(draw slip 4) = ¼. 
Hence P(A1 ∩ A2) = P(A1)P(A2) = ¼; P(A2 ∩ A3) = P(A2)P(A3) = ¼; and 
P(A1 ∩ A3) = P(A1)P(A3) = ¼. Thus, there exists pairwise independence. However, 
P(A1 ∩ A2 ∩ A3) = P(draw slip 4) = ¼ ≠ ⅛ = P(A1)P(A2)P(A3), so the events are not mutually independent. 

 

114. P(A1| A2 ∩ A3) = 1 2 3 1 2 3

2 3 2 3

( ) ( ) ( ) ( )
( ) ( ) ( )

P A A A P A P A P A
P A A P A P A
∩ ∩

=
∩

= P(A1). 
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CHAPTER 3 
 

Section 3.1 
 
1.  

S: FFF SFF FSF FFS FSS SFS SSF SSS 

X: 0 1 1 1 2 2 2 3 
 
 
2. X = 1 if a randomly selected book is non-fiction and X = 0 otherwise; 

X = 1 if a randomly selected executive is a female and X = 0 otherwise; 
X = 1 if a randomly selected driver has automobile insurance and X = 0 otherwise. 

 
 
3. Examples include: M = the difference between the large and the smaller outcome with possible values 0, 1, 

2, 3, 4, or 5; T = 1 if the sum of the two resulting numbers is even and T = 0 otherwise, a Bernoulli random 
variable. See the back of the book for other examples. 

 
 
4. Since a 4-digit code can have between zero and four 0s, the possible values of X are 0, 1, 2, 3, 4.  As 

examples, the PIN 9876 yields X = 0 (no 0s), 1006 corresponds to X = 2 (two 0s), and the very poor PIN 
choice of 0000 implies that X = 4. 

 
 
5. No.  In the experiment in which a coin is tossed repeatedly until a H results, let Y = 1 if the experiment 

terminates with at most 5 tosses and Y = 0 otherwise.  The sample space is infinite, yet Y has only two 
possible values. See the back of the book for another example. 

 
 
6. The possible X values are1, 2, 3, 4, … (all positive integers). Some examples are: 
 

Outcome: RL AL RAARL RRRRL AARRL 

X: 2 2 5 5 5 
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7.  
a. Possible values of X are 0, 1, 2, …, 12; discrete. 
 
b. With n = # on the list, values of Y are 0, 1, 2, … , N; discrete. 
 
c. Possible values of U are 1, 2, 3, 4, … ; discrete. 
 
d. Possible values of X are (0, ∞) if we assume that a rattlesnake can be arbitrarily short or long; not 

discrete. 
 
e. Possible values of Z are all possible sales tax percentages for online purchases, but there are only 

finitely-many of these. Since we could list these different percentages {z1, z2, …, zN}, Z is discrete. 
 
f. Since 0 is the smallest possible pH and 14 is the largest possible pH, possible values of Y are [0, 14]; 

not discrete. 
 
g. With m and M denoting the minimum and maximum possible tension, respectively, possible values of 

X are [m, M]; not discrete. 
 
h. The number of possible tries is 1, 2, 3, …; each try involves 3 racket spins, so possible values of X are 

3, 6, 9, 12, 15, …; discrete. 
 
 
8. The least possible value of Y is 3; all possible values of Y are 3, 4, 5, 6, …. 

Y = 3: SSS;  Y = 4:  FSSS;  Y = 5:  FFSSS, SFSSS; 
Y = 6: SSFSSS, SFFSSS, FSFSSS, FFFSSS; 
Y = 7: SSFFSSS, SFSFSSS, SFFFSSS, FSSFSSS, FSFFSSS, FFSFSSS, FFFFSSS 

 
 
9.  

a. Returns to 0 can occur only after an even number of tosses, so possible X values are 2, 4, 6, 8, …. 
Because the values of X are enumerable, X is discrete. 

 
b. Now a return to 0 is possible after any number of tosses greater than 1, so possible values are 2, 3, 4, 5, 

…. Again, X is discrete. 
 
10.  

a. Possible values of T are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 
 

b. Possible values of X are: –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6. 
 
c. Possible values of U are: 0, 1, 2, 3, 4, 5, 6. 
 
d. Possible values of Z are: 0, 1, 2. 
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Section 3.2 
 
11.  

a.  

43210

0.30

0.25

0.20

0.15

0.10

0.05

0.00

x

p(
x)

 
 

b. P(X ≥ 2) = p(2) + p(3) + p(4) = .30 + .15 + .10 = .55, while P(X > 2) = .15 + .10 = .25. 
 
c. P(1 ≤ X ≤ 3) = p(1) + p(2) + p(3) = .25 + .30 + .15 = .70. 

 
d. Who knows?  (This is just a little joke by the author.) 

 
 
12.  

a. Since there are 50 seats, the flight will accommodate all ticketed passengers who show up as long as 
there are no more than 50.  P(Y ≤ 50) = .05 + .10 + .12 + .14 + .25 + .17 = .83. 
   

b. This is the complement of part a: P(Y > 50) = 1 – P(Y ≤ 50) = 1 – .83 = .17. 
 
c. If you’re the first standby passenger, you need no more than 49 people to show up (so that there’s 

space left for you). P(Y ≤ 49) = .05 + .10 + .12 + .14 + .25 = .66.  On the other hand, if you’re third on 
the standby list, you need no more than 47 people to show up (so that, even with the two standby 
passengers ahead of you, there’s still room). P(Y ≤ 47) = .05 + .10 + .12 = .27. 
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13.  
a. P(X ≤ 3) = p(0) + p(1) + p(2) + p(3) = .10+.15+.20+.25 = .70. 
 
b. P(X < 3) = P(X ≤ 2) = p(0) + p(1) + p(2) = .45. 
 
c. P(X ≥ 3) = p(3) + p(4) + p(5) + p(6) = .55. 
 
d. P(2 ≤ X ≤ 5) = p(2) + p(3) + p(4) + p(5) = .71. 
 
e. The number of lines not in use is 6 – X, and P(2 ≤ 6 – X ≤ 4) = P(–4 ≤ –X ≤ –2) =  

P(2 ≤ X ≤ 4) = p(2) + p(3) + p(4) = .65. 
 
f. P(6 – X ≥ 4) = P(X ≤ 2) = .10 + .15 + .20 = .45. 

 
 
14.  

a. As the hint indicates, the sum of the probabilities must equal 1. Applied here, we get   

∑
=

5

1

)(
y

yp  = k[1 + 2 + 3 + 4 + 5] = 15k = 1 1
15k⇒ = . In other words, the probabilities of the five y-

values are 1
15 15 1

3 52 4
5 15 15, , , , . 

b. P(Y ≤ 3) = P(Y = 1, 2, 3) = 61
15 15 1

32
15 5+ + = = .4. 

c. P(2 ≤ Y ≤ 4) = P(Y = 2, 3, 4) = 4
15 15

3
1
92

15 5+ + = = .6. 

d. Do the probabilities total 1? Let’s check: 1
50
55]2516941[

50
1

50

5

1

2
≠=++++=










∑
=y

y . No, that 

formula cannot be a pmf. 
 
 

15.  
a. (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) 
 
b. X can only take on the values 0, 1, 2. p(0) = P(X = 0) = P({(3,4) (3,5) (4,5)}) = 3/10 = .3; 

p(2) = P(X = 2) = P({(1,2)}) = 1/10 = .1; p(1) = P(X = 1) = 1 – [p(0) + p(2)] = .60; and otherwise p(x) 
= 0. 

 
c. F(0) = P(X ≤ 0) = P(X = 0) = .30; 

F(1) = P(X ≤ 1) = P(X = 0 or 1) = .30 + .60 = .90; 
F(2) = P(X ≤ 2) = 1. 
Therefore, the complete cdf of X is  

 

   F(x) = 











1
90.
30.
0

  

x
x
x

x

≤
<≤
<≤

<

2
21
10

0
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16.  

a.  

x Outcomes p(x) 

0 FFFF .3164 = (.75)4 

1 FFFS,FFSF,FSFF,SFFF .4219 = 4[(.75)3(.25)] 

2 FFSS,FSFS,SFFS,FSSF,SFSF,SSFF .2109 = 6[(.75)2(.25)2] 

3 FSSS, SFSS,SSFS,SSSF .0469 = 4[(.75)(.25)3] 

4 SSSS .0039 = (.25)4 
 

b.  

43210

0.4

0.3

0.2

0.1

0.0

Number with earthquake insurance

Pr
ob

ab
ili

ty

 
 

c. p(x) is largest for X = 1. 
 
d. P(X ≥ 2) = p(2) + p(3) + p(4) = .2109 + .0469 + .0039 = .2614. 

 
 
17.  

a. p(2) = P(Y = 2) = P(first 2 batteries are acceptable) = P(AA) = (.9)(.9) = .81. 
 

b. p(3) = P(Y = 3) = P(UAA or AUA) = (.1)(.9)2 + (.1)(.9)2 = 2[(.1)(.9)2] = .162. 
 
c. The fifth battery must be an A, and exactly one of the first four must also be an A.   

Thus, p(5) = P(AUUUA or UAUUA or UUAUA or UUUAA) = 4[(.1)3(.9)2] = .00324. 
 
d. p(y) = P(the yth is an A and so is exactly one of the first y – 1) = (y – 1)(.1)y–2(.9)2, for y = 2, 3, 4, 5, …. 
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18.  
a. p(1) = P(M = 1) = P({(1,1)}) = 36

1 ; p(2) = P(M = 2) = P({(1,2)(2,1)(2,2)}) = 36
3 ; 

p(3) = P(M = 3) = P({(1,3)(2,3)(3,1)(3,2)(3,3)}) = 36
5 . Continuing the pattern,  p(4) = 36

7 ,  p(5) = 36
9 , 

and p(6) = 36
11 . 

 
b.  Using the values in a, 

  F(m) = 

















1

0

36
25
36
16
36
9

36
4

36
1

 

6
65
54
43
32
21
1

≥
<≤
<≤
<≤
<≤
<≤
<

m
m
m
m
m
m
m

 

 

76543210

1.0

0.8

0.6

0.4

0.2

0.0

 
 
 
19. p(0) = P(Y = 0) = P(both arrive on Wed) = (.3)(.3) = .09; 
 p(1) = P(Y = 1) = P((W,Th) or (Th,W) or (Th,Th)) = (.3)(.4) + (.4)(.3) + (.4)(.4) = .40; 
 p(2) = P(Y = 2) = P((W,F) or (Th,F) or (F,W) or (F,Th) or (F,F)) = .32; 
 p(3) = 1 – [.09 + .40 + .32] = .19. 
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20.  
a. P(X = 0) = P(none are late) = (.6)5 = .07776; P(X = 1) = P(one single is late) = 2(.4)(.6)4 = .10368.   

P(X = 2) = P(both singles are late or one couple is late) = (.4)2(.6)3 + 3(.4)(.6)4 = .19008.  
P(X = 3) = P(one single and one couple is late) = 2(.4)3(.4)(.6)3 = .20736. Continuing in this manner, 
P(X = 4) = .17280, P(X = 5) = .13824, P(X = 6) = .06912, P(X = 7) = .03072, and P(X = 8) = (.4)5 = 
.01024. 

 
b. The jumps in F(x) occur at 0, … , 8. We only display the cumulative probabilities here and not the 

entire cdf: F(0) = .07776, F(1) = .18144, F(2) = .37152, F(3) = .57888, F(4) = .75168, F(5) = .88992, 
F(6) = .95904, F(7) = .98976, F(8) = 1.  

 
And so, P(2 ≤ X ≤ 6) = F(6) – F(2 – 1) = F(6) – F(1) = .95904 – .18144 = .77760. 

 
 
21.  

a. First, 1 + 1/x > 1 for all x = 1, …, 9, so log(1 + 1/x) > 0. Next, check that the probabilities sum to 1: 

10 10 10 10

9

10

9

1 1

1log log log log l2 3 10(1 1/ )
1 2 9

og
x x

x
x

x
= =

       + = = + +       
     

+
+

 
∑ ∑  ; using properties of logs, 

this equals 10
2 3
1

10og
2

l
9

× × × 
 
 

 = log10(10) = 1. 

b. Using the formula p(x) = log10(1 + 1/x) gives the following values: p(1) = .301, p(2) = .176, p(3) = 
.125, p(4) = .097, p(5) = .079, p(6) = .067, p(7) = .058, p(8) = .051, p(9) = .046. The distribution 
specified by Benford’s Law is not uniform on these nine digits; rather, lower digits (such as 1 and 2) 
are much more likely to be the lead digit of a number than higher digits (such as 8 and 9). 

 
c. The jumps in F(x) occur at 0, … , 8. We display the cumulative probabilities here: F(1) = .301, F(2) = 

.477, F(3) = .602, F(4) = .699, F(5) = .778, F(6) = .845, F(7) = .903, F(8) = .954, F(9) = 1. So, F(x) = 
0 for x < 1; F(x) = .301 for 1 ≤ x < 2;  
F(x) = .477 for 2 ≤ x < 3; etc. 

 
d. P(X ≤ 3) = F(3) = .602; P(X ≥ 5) = 1 – P(X < 5) = 1 – P(X ≤ 4) = 1 – F(4) = 1 – .699 = .301. 

 
 
22. The jumps in F(x) occur at x = 0, 1, 2, 3, 4, 5, and 6, so we first calculate F( ) at each of these values: F(0) 

= P(X ≤ 0) = P(X = 0) = p(0) = .10, F(1) = P(X ≤ 1) = p(0) + p(1) = .25,  
F(2) = P(X ≤ 2) = p(0) + p(1) + p(2) = .45, F(3) = .70, F(4) = .90, F(5) = .96, and F(6) = 1. 

 The complete cdf of X is  

    F(x) = 



















00.1
96.
90.
70.
45.
25.
10.
00.

 

x
x
x
x
x
x
x
x

≤
<≤
<≤
<≤
<≤
<≤
<≤
<

6
65
54
43
32
21
10
0

 

 Then a. P(X ≤ 3) = F(3) = .70, b. P(X < 3) = P(X ≤ 2) = F(2) = .45, c. P(X ≥ 3) = 1 – P(X ≤ 2) =  
1 – F(2) = 1 – .45 = .55, d. P(2 ≤ X ≤ 5) = F(5) – F(1) = .96 – .25 = .71. 
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23.  

a. p(2) = P(X = 2) = F(3) – F(2) = .39 – .19 = .20. 
 
b. P(X > 3) = 1 – P(X ≤ 3) = 1 – F(3) = 1 – .67 = .33. 
 
c. P(2 ≤ X ≤ 5) = F(5) – F(2–1) = F(5) – F(1) = .92 – .19 = .78. 
 
d. P(2 < X < 5) = P(2 < X ≤ 4) = F(4) – F(2) = .92 – .39 = .53. 
 
 

24.  
a. Possible X values are those values at which F(x) jumps, and the probability of any particular value is 

the size of the jump at that value.  Thus we have: 
 

x 1 3 4 6 12 
p(x) .30 .10 .05 .15 .40 

 
b. P(3 ≤ X ≤ 6) = F(6) – F(3–) = .60 – .30 = .30; P(4 ≤ X) = 1 – P(X < 4) = 1 – F(4–) = 1 – .40 = .60. 

 
 
25. p(0) = P(Y = 0) = P(B first) = p; 

p(1) = P(Y = 1) = P(G first, then B) = (1 – p)p; 
p(2) = P(Y = 2) = P(GGB) = (1 – p)2p; 
Continuing, p(y) = P(y Gs and then a B) = (1 – p)yp for y = 0,1,2,3,…. 

 
 
26.  

a. Possible X values are 1, 2, 3, … 
p(1) = P(X = 1) = P(return home after just one visit) = 3

1 ; 

p(2) = P(X = 2) = P(visit a second friend, and then return home) = 3
1

3
2 ⋅ ; 

p(3) = P(X = 3) = P(three friend visits, and then return home) = ( )2
3

2 1
3· ; 

and in general, p(x) = ( ) 12 1
3 3·

x−  for x = 1, 2, 3, … 
 
b. The number of straight line segments is Y = 1 + X (since the last segment traversed returns Alvie to 0). 

Borrow the answer from a, and p(y) = ( ) 22 1
3 3·

y−  for y =  2, 3, …. 
 
c. Possible Z values are 0, 1, 2, 3 , …. In what follows, notice that Alvie can’t visit two female friends in 

a row or two male friends in a row. 
p(0) = P(male first and then home) = 1 1 1

2 3 6= ; 
p(1) = P(exactly one visit to a female) = P(F first, then 0) + P(F, M, 0) + P(M, F, 0) +    P(M, F, M, 0) 
= 1 1 1 2 1 1 2 1 1 2 2 1

2 3 2 3 3 2 3 3 2 3 3 3+ + + = 25
54 ; for the event Z = 2, two additional visits occur, and the probability of 

those is 2 2 4
3 3 9= , so p(2) = 4

9 (1)p = 254
9 54· ; similarly, p(3) = 4

9 (2)p  = ( )2 254
9 54· ; and so on. Therefore, p(0) 

= 1
6  and p(z) = ( ) 5

9 54
1 24 ·z− for z = 1, 2, 3, …. 
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27.  

a. The sample space consists of all possible permutations of the four numbers 1, 2, 3, 4: 
   

outcome x value outcome x value outcome x value 
1234 4 2314 1 3412 0 
1243 2 2341 0 3421 0 
1324 2 2413 0 4132 1 
1342 1 2431 1 4123 0 
1423 1 3124 1 4213 1 
1432 2 3142 0 4231 2 
2134 2 3214 2 4312 0 
2143 0 3241 1 4321 0 

      
 
b. From the table in a, p(0) = P(X = 0) = 24

9 , p(1) = P(X = 1) = 24
8 , p(2) = P(Y = 2) = 24

6 , 

p(3) = P(X = 3) = 0, and p(4) = P(Y = 4) = 24
1 . 

 
 
28. If x1 < x2, then F(x2) = P(X ≤ x2) = P({X ≤ x1} ∪ {x1 < X ≤ x2}) = P(X ≤ x1) + P(x1 < X ≤ x2 ). Since all 

probabilities are non-negative, this is ≥ P(X ≤ x1) + 0 = P(X ≤ x1) = F(x1). That is, x1 < x2 implies F(x1) ≤ 
F(x2), QED. 
 
Looking at the proof above, F(x1) = F(x2) iff P(x1 < X ≤ x2) = 0. 

 
 

Section 3.3 
 
29.  

a. 
all 

( ) ( )
x

E X xp x=∑ = 1(.05) + 2(.10) + 4(.35) + 8(.40) + 16(.10) = 6.45 GB. 

 
b. 2

all 
)( ) ( ( )

x
V X x p xµ= −∑ = (1 – 6.45)2(.05) + (2 – 6.45)2(.10) + … + (16 – 6.45)2(.10) = 15.6475. 

 
c. σ = ( ) 15.6475V X = = 3.956 GB. 
 
d. 

al  

2 2

l
( ) ( )

x
E X x p x=∑ = 12(.05) + 22(.10) + 42(.35) + 82(.40) + 162(.10) = 57.25. Using the shortcut 

formula, V(X) = E(X2) – μ2 = 57.25 – (6.45)2 = 15.6475.  
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30.  

a. E(Y) = 
3

0
( )

y
y p y

=

⋅∑ = 0(.60) + 1(.25) + 2(.10) + 3(.05) = .60. 

 

b. E(100Y2) = 
3

2

0
100 ( )

y
y p y

=

⋅∑ = 0(.60) + 100(.25) + 400(.10) + 900(.05) = $110. 

 
 
31. From the table in Exercise 12, E(Y) = 45(.05) + 46(.10) + … + 55(.01) = 48.84; similarly, E(Y2) = 452(.05) 

+ 462(.10) + … + 552(.01) = 2389.84; thus V(Y) = E(Y2) – [E(Y)]2  = 2389.84 – (48.84)2 = 4.4944 and σY = 
4.4944 = 2.12.  

One standard deviation from the mean value of Y gives 48.84 ± 2.12 = 46.72 to 50.96. So, the probability Y 
is within one standard deviation of its mean value equals P(46.72 < Y < 50.96) = P(Y = 47, 48, 49, 50) =  
.12 + .14 + .25 + .17 = .68. 

 
32.  

a. E(X) = (16)(.2) + (18)(.5) + (20)(.3) = 18.2 ft3; E(X2) = (16)2(.2) + (18)2(.5) + (20)2(.3) = 333.2. Put 
these together, and V(X) = E(X2) – [E(X)]2 = 333.2 – (18.2)2 = 1.96. 
 

b. Use the linearity/rescaling property: E(70X – 650) = 70μ – 650 = 70(18.2) – 650 = $624. Alternatively, 
you can figure out the price for each of the three freezer types and take the weighted average. 
 

c. Use the linearity/rescaling property again: V(70X – 650) = 702σ2 = 702(1.96) = 9604. (The 70 gets 
squared because variance is itself a square quantity.)  
 

d. We cannot use the rescaling properties for E(X – .008X2), since this isn’t a linear function of X. 
However, since we’ve already found both E(X) and E(X2), we may as well use them: the expected 
actual capacity of a freezer is E(X – .008X2) = E(X) – .008E(X2) = 18.2 – .008(333.2) = 15.5344 ft3.  
Alternatively, you can figure out the actual capacity for each of the three freezer types and take the 
weighted average. 

 
 
33.  

a. E(X2) = 
1

2

0
( )

x
x p x

=

⋅∑ = 02(1 – p) + 12(p) = p. 

 
b. V(X) = E(X2) – [E(X)]2  = p – [p]2 = p(1 – p). 
 
c. E(X79) = 079(1 – p) + 179(p) = p. In fact, E(Xn) = p for any non-negative power n. 

 
 

34. Yes, the expectation is finite. E(X) = 3 2
1 1 1

1( )
x x x

cx p x x c
x x

∞ ∞ ∞

= = =

⋅ = ⋅ =∑ ∑ ∑ ; it is a well-known result from the 

theory of infinite series that 2
1

1
x x

∞

=
∑  < ∞, so E(X) is finite. 
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35. Let h3(X) and h4(X) equal the net revenue (sales revenue minus order cost) for 3 and 4 copies purchased, 

respectively.  If 3 magazines are ordered ($6 spent), net revenue is $4 – $6 = –$2 if   X = 1, 2($4) – $6 = $2 
if X = 2, 3($4) – $6 = $6 if X = 3, and also $6 if X = 4, 5, or 6 (since that additional demand simply isn’t 
met. The values of h4(X) can be deduced similarly. Both distributions are summarized below. 

 
x 1 2 3 4 5 6 

h3(x) –2 2 6 6 6 6 
h4(x) –4 0 4 8 8 8 
p(x) 15

1  15
2  15

3  15
4  15

3  15
2  

  

Using the table, E[h3(X)] = 
6

3
1

( ) ( )
x

h x p x
=

⋅∑ = (–2)( 15
1 ) + … + (6)( 15

2 ) = $4.93. 

Similarly, E[h4(X)] = 
6

4
1

( ) ( )
x

h x p x
=

⋅∑ = (–4)( 15
1 ) + … + (8)( 15

2 ) = $5.33. 

Therefore, ordering 4 copies gives slightly higher revenue, on the average. 
 
 
36. You have to be careful here: if $0 damage is incurred, then there’s no deductible for the insured driver to 

pay! Here’s one approach: let h(X) = the amount paid by the insurance company on an accident claim, 
which is $0 for a “no damage” event and $500 less than actual damages (X – 500) otherwise. The pmf of 
h(X) looks like this: 
 

x 0 1000 5000 10000 
h(x) 0 500 4500 9500 
p(x) .8 .1 .08 .02 

 
Based on the pmf, the average payout across these types of accidents is E(h(X)) = 0(.8) + 500(.1) + 
4500(.08) + 9500(.02) = $600. If the insurance company charged $600 per client, they’d break even (a bad 
idea!).  To have an expected profit of $100 — that is, to have a mean profit of $100 per client — they 
should charge $600 + $100 = $700. 

 
 

37. Using the hint,
1 1

1 1 1 ( 1) 1( )
2 2

n n

x x

n n nE X x x
n n n= =

+ +   = ⋅ = = =      
∑ ∑ . Similarly, 

2 2

1

2

1

1 1 1 ( 1)(2 1) ( 1)(2 1)(
6 6

)
n n

x x

n n n n nE X x x
n n n= =

+ + + +   ⋅ = = =     
=


∑ ∑ , so 

2 2( 1)(2 1) 1 1( )
6 2 12

n n n nV X + + + − = − = 
 

. 

 
 
38.  

a. E(X) = 1(.15) + 2(.35) + 3(.35) + 4(.15) = 2.5. By linearity, E(5 – X) = 5 – E(X) = 5 – 2.5 = 2.5 as well.  
 

b. Since 150/(5 – X) is not a linear function of X, we cannot use the results from a. Instead, we must 
create a new weighted average: 
E[150/(5 – X)] = [150/(5 – 1)](.15) + [150/(5 – 2)](.35) + [150/(5 – 3)](.35) + [150/(5 – 4)](.15) = 
71.875.  Since $71.875 < $75, they’re better off in the long run charging a flat fee of $75. 
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39. From the table, E(X) = ∑ xp(x) = 2.3, E(X2) = 6.1, and V(X) = 6.1 – (2.3)2 = .81. Each lot weighs 5 lbs, so 

the number of pounds left = 100 – 5X.  Thus the expected weight left is E(100 – 5X) = 100 – 5E(X) =     
88.5 lbs, and the variance of the weight left is V(100 – 5X) = V(–5X) = (–5)2V(X) = 25V(X) = 20.25. 

 
 
40.  

a. The line graph of the pmf of –X is just the line graph of the pmf of X reflected about zero, so both have 
the same degree of spread about their respective means, suggesting V(–X) = V(X). 

 
b. With a = –1 and b = 0, V(–X) = V(aX + b) = a2V(X) = (–1)2V(X) = V(X). 
 
 

 
41. Use the hint: V(aX + b) = 2[(( ) ( )) ]E aX b E aX b+ − +  = 2[ ( )] ( )ax b E aX b p x+ − +∑ = 

2[ ( )] ( )ax b a b p xµ+ − +∑ = 22 2 2[ ] ( ) ( ( ) ( ).)ax a p x a x p x a V Xµµ− = − =∑ ∑  

 
 

42.  
a. E[X(X–1)] = E(X2) – E(X) ⇒ E(X2) = E[X(X–1)] + E(X) = 27.5 + 5 = 32.5. 
 
b. V(X) = E(X2) – [E(X)]2 = 32.5 – (5)2 = 7.5. 
 
c. Substituting a into b, V(X) = E[X(X–1)] + E(X) – [E(X)]2

. 
 
 
43. With a = 1 and b = –c, E(X – c) = E(aX + b) =  a E(X) + b = E(X) – c.   

When c = µ,  E(X – µ) = E(X) – µ = µ – µ = 0; i.e., the expected deviation from the mean is zero. 
 
 
44.  

a. See the table below. 
k 2 3 4 5 10 

1/k2 .25 .11 .06 .04 .01 
 

b. From the table in Exercise 13, μ = 2.64 and σ2 = 2.3704 ⇒ σ = 1.54.  
For k = 2, P(|X – µ| ≥ 2σ) = P(|X – 2.64| ≥ 2(1.54)) = P(X ≥ 2.64 + 2(1.54) or  
X ≤ 2.64 – 2(1.54)) = P(X ≥ 5.72 or X ≤ –.44) = P(X = 6) = .04. Chebyshev’s bound of .25 is much too 
conservative.   
 
For k = 3, 4, 5, or 10, P(|X – µ| ≥ kσ) turns out to be zero, whereas Chebyshev’s bound is positive. 
Again, this points to the conservative nature of the bound 1/k2. 

 
c. µ = 0 and σ = 1/3, so P(|X – µ| ≥ 3σ) = P(|X| ≥ 1) = P(X = –1 or +1) = 9

1
18
1

18
1 =+ , identical to 

Chebyshev’s upper bound of 1/k2 = 1/32 = 1/9. 
 
d. There are many. For example, let p(–1) = p(1) = 1

50 and p(0) = 24
25 . 
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45. a ≤ X ≤ b means that a ≤ x ≤ b for all x in the range of X. Hence ap(x) ≤ xp(x) ≤ bp(x) for all x, and  

 

( ) ( ) ( )

( ) ( ) ( )
(
( )

1 1)

ap x xp x bp x

a p x xp x b p x
a E X b

a E X b
⋅ ⋅

≤ ≤

≤ ≤

≤ ≤
≤ ≤

∑ ∑ ∑
∑ ∑ ∑  

Section 3.4 
 
46.  

a. b(3;8,.35) = 53 )65(.)35(.
3
8








= .279. 

b. b(5;8,.6) = 35 )4(.)6(.
5
8








= .279. 

 
c. P(3 ≤ X ≤ 5) = b(3;7,.6) + b(4;7,.6) + b(5;7,.6) = .745. 
 

d. P(1 ≤ X) = 1 – P(X = 0) = 1 – 90 )9(.)1(.
0
9








 = 1 – (.9)9 = .613. 

 
 
47.  

a. B(4;15,.7) = .001. 
 
b. b(4;15,.7) = B(4;15,.7) – B(3;15,.7) = .001 – .000 = .001. 
 
c. Now p = .3 (multiple vehicles).  b(6;15,.3) = B(6;15,.3) – B(5;15,.3) = .869 – .722 = .147. 
 
d. P(2 ≤ X ≤ 4) = B(4;15,.7) – B(1;15,.7) = .001. 
 
e. P(2 ≤ X) = 1 – P(X ≤ 1) = 1 – B(1;15,.7) = 1 – .000 = 1. 
 
f. The information that 11 accidents involved multiple vehicles is redundant (since n = 15 and x = 4).  So, 

this is actually identical to b, and the answer is .001. 
 
 
48. X ~ Bin(25, .05) 

a. P(X ≤ 3) = B(3;25,.05) = .966, while P(X < 3) = P(X ≤ 2) = B(2;25,.05) = .873. 
 
b. P(X ≥ 4) = 1 – P(X ≤ 3) = 1 –  B(3;25,.05) = .1 – .966 = .034. 
 
c. P(1 ≤ X ≤ 3) = P(X ≤ 3) – P(X ≤ 0) = .966 – .277 = .689. 
 
d. E(X) = np = (25)(.05) = 1.25, σX = (1 ) 25(.05)(.95)np p− = = 1.09. 
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e. With n = 50, P(X = 0) = 0 50 5050
(.05) (.95) (.95)

0
 

= 
 

 = .077. 

 
49. Let X be the number of “seconds,” so X ~ Bin(6, .10). 

a. P(X = 1) = (1 )x n xn
p p

x
− 

− 
 

= 3543.)9(.)1(.
1
6 51 =







. 

 

b. P(X ≥ 2) = 1 – [P(X = 0) + P(X = 1)] = 1 – 0 6 1 56 6
(.1) (.9) (.1) (.9)

0 1
    

+    
    

= 1 – [.5314 + .3543] = 

.1143. 
 

c. Either 4 or 5 goblets must be selected. 

Select 4 goblets with zero defects: P(X = 0) = 6561.)9(.)1(.
0
4 40 =







. 

Select 4 goblets, one of which has a defect, and the 5th is good: 26244.9.)9(.)1(.
1
4 31 =×




















 

So, the desired probability is .6561 + .26244 = .91854. 
 
 
50. Let X be the number of faxes, so X ~ Bin(25, .25). 

a. P(X ≤ 6) = B(6;25,.25) = .561. 
 
b. P(X = 6) = b(6;25,.25) = .183. 
 
c. P(X ≥ 6) = 1 – P(X ≤ 5) = 1 – B(5;25,.25) = .622. 
 
d. P(X > 6) = 1 – P(X ≤ 6) = 1 – .561 = .439. 

 
51. Let X be the number of faxes, so X ~ Bin(25, .25). 

a. E(X) = np = 25(.25) = 6.25. 
 
b. V(X) = np(1–p) = 25(.25)(.75) = 4.6875, so SD(X) = 2.165. 
 
c. P(X > 6.25 + 2(2.165)) = P(X > 10.58) = 1 – P(X ≤ 10.58) = 1 – P(X ≤ 10) = 1 – B(10;25,.25) = .030. 
 

 
52. Let X be the number of students who want a new copy, so X ~ Bin(n = 25, p = .3). 

a. E(X) = np = 25(.3) = 7.5 and SD(X) = (1 ) 25(.3)(.7)np p− = = 2.29. 
 

b. Two standard deviations from the mean converts to 7.5 ± 2(2.29) = 2.92 & 12.08. For X to be more 
than two standard deviations from the means requires X < 2.92 or X > 12.08.  Since X must be a non-
negative integer, P(X < 2.92 or X > 12.08) = 1 – P(2.92 ≤ X ≤ 12.08) = 1 – P(3 ≤ X ≤ 12) =  

1 – 25
12

3

25
(.(.3) 7)

x

x x

x=

− 
 
 

∑ = 1 – .9736 = .0264. 
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c. If X > 15, then more people want new copies than the bookstore carries.  At the other end, though, 

there are 25 – X students wanting used copies; if 25 – X > 15, then there aren’t enough used copies to 
meet demand.  
 
The inequality 25 – X > 15 is the same as X < 10, so the bookstore can’t meet demand if either X > 15 
or X < 10.  All 25 students get the type they want iff 10 ≤ X ≤ 15: 

P(10 ≤ X ≤ 15) = 25
15

10

25
(.7)(.3)x x

x x=

− 
 
 

∑ = .1890. 

 
d. The bookstore sells X new books and 25 – X used books, so total revenue from these 25 sales is given 

by h(X) = 100(X) + 70(25 – X) = 30X + 1750. Using linearity/rescaling properties, expected revenue 
equals E(h(X)) = E(30X + 1750) = 30μ + 1750 = 30(7.5) + 1750 = $1975. 

 
 
53. Let “success” = has at least one citation and define X = number of individuals with at least one citation.  

Then X ~ Bin(n = 15, p = .4).  
 

a. If at least 10 have no citations (failure), then at most 5 have had at least one (success): 
P(X ≤ 5) = B(5;15,.40) = .403. 

 
b. Half of 15 is 7.5, so less than half means 7 or fewer: P(X ≤ 7) = B(7;15,.40) =  .787.  
 
c. P(5 ≤ X ≤ 10) = P(X ≤ 10) – P(X ≤ 4) = .991 – .217 = .774. 

 
 
54. Let X equal the number of customers who choose an oversize racket, so X ~ Bin(10, .60). 

a. P(X ≥ 6) = 1 – P(X ≤ 5) = 1 – B(5;20,.60) = 1 – .367 = .633. 
 
b. μ = np = 10(.6) = 6 and σ = 10(.6)(.4) = 1.55, so μ ± σ = (4.45, 7.55). 

P(4.45 < X < 7.55) = P(5 ≤ X ≤ 7) = P(X ≤ 7) – P(X ≤ 4) = .833 – .166 = .667. 
 

c. This occurs iff between 3 and 7 customers want the oversize racket (otherwise, one type will run out 
early). P(3 ≤ X ≤ 7) = P(X ≤ 7) – P(X ≤ 2) = .833 – .012 = .821. 

 
 
55. Let “success” correspond to a telephone that is submitted for service while under warranty and must be 

replaced.  Then p = P(success) = P(replaced | submitted)⋅P(submitted) = (.40)(.20) = .08.  Thus X, the 
number among the company’s 10 phones that must be replaced, has a binomial distribution with n = 10 and 

p = .08, so P(X = 2) = 1478.)92(.)08(.
2

10 82 =







. 

 
56. Let X = the number of students in the sample needing accommodation, so X ∼ Bin (25, .02). 

a. P(X = 1) = 25(.02)(.98)24 = .308. 
 
b. P(X ≥ 1) = 1 – P(X=0) = 1 – (.98)25 = 1 – .603 = .397. 
 
c. P(X ≥ 2) = 1 – P(X ≤ 1) = 1 – [.603 + .308] = .089. 
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d. μ = 25(.02) = .5 and 25(.02)(.98) .49σ = = = .7, so μ ± σ = (–.9, 1.9). P(–.9 ≤ X ≤ 1.9) =             
P(X = 0 or 1) = .911. 

 

e. 03.3
25

)3(5.24)5.4(5.
=

+  hours. Notice the sample size of 25 is actually irrelevant. 

 
57. Let X = the number of flashlights that work, and let event B = {battery has acceptable voltage}.   

Then P(flashlight works) = P(both batteries work) = P(B)P(B) = (.9)(.9) = .81.  We have assumed here that 
the batteries’ voltage levels are independent. 
Finally, X ∼ Bin(10, .81), so P(X ≥ 9) = P(X = 9) + P(X = 10) = .285 + .122 = .407. 

 
 
58. Let p denote the actual proportion of defectives in the batch, and X denote the number of defectives in the 

sample. 
 
a. If the actual proportion of defectives is p, then X ~ Bin(10, p), and the batch is accepted iff   X ≤ 2. 

Using the binomial formula, P(X ≤ 2) = 0 10 1 9 2 810 10 10
(1 ) (1 ) (1 )

0 1 2
p p p p p p     

+ +     
   

− − −
 

= 

2 2 810[(1 ) (1 ] 1 )5) (4p p p p p+− −+− . Values for this expression are tabulated below. 
 
p:  .01  .05  .10  .20  .25 
P(X ≤ 2): .9999  .9885  .9298  .6778  .5256 
 

b. The polynomial function listed in part a is graphed below. 
 

c. Replace “2” with “1,” and the shipment is accepted iff X ≤ 1 and the probability of this event is given 

by P(X ≤ 1) = 0 10 1 910 10
(1 ) (1 )

0 1
p p p p   

+  


−


−
 

= 9(1 9 )(1 )p p+ − . Values for this new expression are 

tabulated below. 
 
p:  .01  .05  .10  .20  .25 
P(X ≤ 1): .9957  .9139  .7361  .3758  .2440 
 
This operating characteristic (OC) curve is also graphed below. 
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d. Now n = 15, and P(X ≤ 2) = 0 15 1 34 11 215 15 15
(1 ) (1 ) (1 )

0 1 2
p p p p p p     

+ +    − − −
     

. Values for this 

function are tabulated below. The corresponding OC curve is also presented above. 
 
p:  .01  .05  .10  .20  .25 
P(X ≤ 2): .9996  .9638  .8159  .3980  .2361 
 

e. The exercise says the batch is acceptable iff p ≤ 10, so we want P(accept) to be high when p is less 
than .10 and low when p is greater than .10. The plan in d seems most satisfactory in these respects. 
 
 

59. In this example, X ~ Bin(25, p) with p unknown. 
a. P(rejecting claim when p = .8) = P(X ≤ 15 when p = .8) = B(15; 25, .8) = .017. 
 
b. P(not rejecting claim when p = .7) = P(X > 15 when p = .7) = 1 – P(X ≤ 15 when p = .7) = 

= 1 – B(15; 25, .7) = 1 – .189 = .811.  
For p = .6, this probability is = 1 – B(15; 25, .6) = 1 – .575 = .425. 
 

c. The probability of rejecting the claim when p = .8 becomes B(14; 25, .8) = .006, smaller than in a 
above.  However, the probabilities of b above increase to .902 and .586, respectively. So, by changing 
15 to 14, we’re making it less likely that we will reject the claim when it’s true (p really is ≥ .8), but 
more likely that we’ll “fail” to reject the claim when it’s false (p really is < .8). 

 
 
60. Using the hint, h(X) = 1 ⋅ X + 2.25(25 – X) = 62.5 – 1.5X, which is a linear function. Since the mean of X is 

E(X) = np = (25)(.6) = 15, E(h(X)) = 62.5 – 1.5E(X) = 62.5 – 1.5(15) = $40. 
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61. If topic A is chosen, then n = 2. When n = 2, P(at least half received) = P(X ≥ 1) = 1 – P(X = 0) = 

0 22
(.9) (.11 )

0
 

−  
 

= .99. 

If topic B is chosen, then n = 4. When n = 4, P(at least half received) = P(X ≥ 2) = 1 – P(X ≤ 1) = 

0 4 1 34 4
(.9) (.1) (.9) (.1)

0 1
1    
−    



 
+ 

   
= .9963. 

 Thus topic B should be chosen if p = .9. 
However, if p = .5, then the probabilities are .75 for A and .6875 for B (using the same method as above), 
so now A should be chosen. 

 
 
62.  

a. np(1 – p) = 0 if either p = 0 (whence every trial is a failure, so there is no variability in X) or if p = 1 
(whence every trial is a success and again there is no variability in X). 

 

b. [ ](1 )d np p
dp

−  = n[(1)(1 – p) + p(–1)] = n[1 – 2p] = 0  ⇒ p = .5, which is easily seen to correspond to 

a maximum value of V(X). 
 
 
63.  

a. b(x; n, 1 – p) = (1 ) ( )x n xn
p p

x
− 

− 
 

= ( ) (1 )n x xn
p p

n x
− 

− − 
 = b(n–x; n, p). 

 Conceptually, P(x S’s when P(S) = 1 – p) = P(n–x F’s when P(F) = p), since the two events are 
identical, but the labels S and F are arbitrary and so can be interchanged (if P(S) and P(F) are also 
interchanged), yielding P(n–x S’s when P(S) = 1 – p) as desired. 

 
b. Use the conceptual idea from a: B(x; n, 1 – p) = P(at most x S’s when P(S) = 1 – p) =  

P(at least n–x F’s when P(F) = p), since these are the same event 
= P(at least n–x S’s when P(S) = p), since the S and F labels are arbitrary  
= 1 – P(at most n–x–1 S’s when P(S) = p) = 1 – B(n–x–1; n, p). 
 

c. Whenever p > .5, (1 – p) < .5 so probabilities involving X can be calculated using the results a and b in 
combination with tables giving probabilities only for p ≤ .5. 
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64. Proof of E(X) = np: 
 

E(X)  = 
0 1

!(1 ) (1 )
!( )!

n n
x n x x n x

x x

n nx p p x p p
x x n x

− −

= =

 
⋅ − = ⋅ −  − 

∑ ∑  

 = 1

1 1

! ( 1)!(1 ) (1 )
( 1)!( )! ( 1)!( )!

n n
x n x x n x

x x

n np p np p p
x n x x n x

− − −

= =

−
− = −

− − − −∑ ∑  

 = 
1

1

0

( 1)! (1 )
( )!( 1 )!

n
y n y

y

nnp p p
y n y

−
− −

=

−
−

− −∑  (y replaces x – 1) 

 = 
1

1

0

1
(1 )

n
y n y

y

n
np p p

y

−
− −

=

 −  
−  

  
∑  

The expression in brackets is the sum over all possible values y = 0, 1, 2,  … , n – 1 of a binomial pmf 
based on n – 1 trials. Thus, the sum in brackets equals 1, leaving only np, as desired. 
 
 

65.  
a. Although there are three payment methods, we are only concerned with S = uses a debit card and F = 

does not use a debit card.  Thus we can use the binomial distribution.  So, if X = the number of 
customers who use a debit card, X ~ Bin(n = 100, p = .2). From this,  
E(X) = np = 100(.2) = 20, and V(X) = npq = 100(.2)(1–.2) = 16. 

 
b. With S = doesn’t pay with cash, n = 100 and p = .7, so μ = np = 100(.7) = 70, and V = 21. 

 
 
66.  

a. Let Y = the number with reservations who show up, a binomial rv with n = 6 and p = .8.  Since there 
are only four spaces available, at least one individual cannot be accommodated if Y is more than 4. The 
desired probability is P(Y = 5 or 6) = b(5; 6, .8) + b(6;6,.8) = .3932 + .2621 = .6553. 

 
b. Let h(Y) = the number of available spaces.  Then 

when y is: 0 1 2 3 4 5 6  
h(y) is: 4 3 2 1 0 0 0  

The expected number of available spaces when the limousine departs equals 

E[h(Y)] = 
6

0
( ) ( ;6,.8)

y
h y b y

=

⋅∑  = 4(.000) + 3(.002) = 2(.015) + 1(.082) + 0 + 0 + 0 = 0.118. 

 
c. Possible X values are 0, 1, 2, 3, and 4.  X = 0 if there are 3 reservations and 0 show or 4 reservations 

and 0 show or 5 reservations and 0 show or 6 reservations and none show, so 
P(X = 0) = b(0; 3, .8)(.1) + b(0; 4, .8)(.2) + b(0; 5, .8)(.3) + b(0; 6, .8)(.4)  
= .0080(.1) + .0016(.2) + .0003(.3) + .0001(.4) = .0013. 
Similarly, P(X = 1) = b(1; 3, .8)(.1) + … + b(1; 6, .8)(.4) = .0172; P(X = 2) = .0906;  
P(X = 3) = .2273; and P(X = 4) = .6636. 

 
These values are displayed below. 
 

x 0 1 2 3 4 
p(x) .0013 .0172 .0906 .2273 .6636 
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67. When n = 20 and p = .5, µ = 10 and σ = 2.236, so 2σ = 4.472 and 3σ = 6.708.   
 The inequality |X – 10| ≥ 4.472 is satisfied if either X ≤ 5 or X ≥ 15, or  

P(|X – µ| ≥ 2σ) = P(X ≤ 5 or X ≥ 15) = .021 + .021 = .042. The inequality |X – 10| ≥ 6.708 is satisfied if 
either X ≤ 3 or X ≥ 17, so P(|X – μ| ≥ 3σ) = P(X ≤ 3 or X ≥ 17) = .001 + .001 = .002. 

 
 In the case p = .75, µ = 15 and σ = 1.937, so 2σ = 3.874 and 3σ = 5.811.  

P(|X – 15| ≥ 3.874) = P(X ≤ 11 or X ≥ 19) = .041 + .024 = .065, whereas  
P(|X – 15| ≥ 5.811) = P(X ≤ 9) = .004.   

 
All these probabilities are considerably less than the upper bounds given by Chebyshev: 
for k = 2, Chebyshev’s bound is 1/22 = .25; for k = 3, the bound is 1/32 = .11. 

 

Section 3.5 
 
68.  

a. There are 18 items (people) total, 8 of which are “successes” (first-time examinees). Among these 18 
items, 6 have been randomly assigned to this particular examiner. So, the random variable X is 
hypergeometric, with N = 18, M = 8, and n = 6. 

 

b. P(X = 2) = 
2 6 2

1

8 1

6

8

8

8−  
  
  

 
 
 

−
=

2
18

8 10

6

4
  
  
  
 
 
 

= (28)(210)
18564

= .3167. 

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 
18

8

6

10
0 6
  
  
  
 
 
 

+
18

8

6

10
1 5
  
  
  
 
 
 

+ .3167 =  

.0113 + .1086 + .3167 = .4366. 
P(X ≥ 2) = 1 – P(X ≤ 1) = 1 – [P(X = 0) + P(X = 1)] = 1 – [.0113 + .1086] = .8801. 

 

c. E(X) = 8· 6 ·
18N

n M
= = 2.67; V(X) = 8 8

18
18 6 6 1

118 81
−    ⋅ −    −    

= 1.04575; σ = 1.023.   

 
 
69. According to the problem description, X is hypergeometric with n = 6, N = 12, and M = 7. 

a. P(X = 4) = 

7 5
4 2 350 .379
12 924
6

  
  
   = =
 
 
 

. P(X ≤ 4) = 1 – P(X > 4) = 1 – [P(X = 5) + P(X = 6)] = 

7 5 7
5 1 6

1
12 12
6 6

5
0

      
      
      − +
    
    
    

= 1 – [.114 + .007] = 1 – .121 = .879. 
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b. E(X) = 7· 6 ·
12N

n M
= = 3.5; V(X) = 12 6 7 76 1

12 1 12 12
−    −    −    

= 0.795; σ = 0.892. So, 

P(X > μ + σ) = P(X > 3.5 + 0.892) = P(X > 4.392) = P(X = 5 or 6) = .121 (from part a).      
 
c. We can approximate the hypergeometric distribution with the binomial if the population size and the 

number of successes are large. Here, n = 15 and M/N = 40/400 = .1, so  
h(x;15, 40, 400) ≈ b(x;15, .10).  Using this approximation, P(X ≤ 5) ≈ B(5; 15, .10) = .998 from the 
binomial tables. (This agrees with the exact answer to 3 decimal places.) 

 
 
70.  

a. P(X = 10) = h(10; 15, 30, 50) = 

30 20
10 5

.2070
50
15

  
  
   =
 
 
 

. 

b. P(X ≥ 10) = h(10; 15, 30, 50) + h(11; 15, 30, 50) + … + h(15; 15, 30, 50) 
= .2070 + .1176 + .0438 + .0101 + .0013 + .0001 = .3799. 

 
c. P(at least 10 from the same class) = P(at least 10 from second class [answer from b]) + P(at least 10 

from first class).  But “at least 10 from 1st class” is the same as “at most 5 from the second” or P(X ≤ 
5). 
P(X ≤ 5) = h(5; 15, 30, 50) + h(4; 15, 30, 50) + … + h(0; 15, 30, 50) 
= .011697 + .002045 + .000227 + .000015 + .000001 + .000000 = .01398.  
So the desired probability is P(X ≥ 10) + P(X ≤ 5) = .3799 + .01398 = .39388. 
 

d. E(X) = 3015 9
50

Mn
N

⋅ = ⋅ = ; V(X) = 50 15 30 309 1
50 1 50 50
−    −    −    

= 1.543;  σX = 1.242. 

 
e. Let Y = the number not among these first 15 that are from the second section. Since there are 30 

students total in that section, Y = 30 – X.  Then E(Y) = 30 – E(X) = 30 – 9 = 21, and 
V(Y) = V(30 – X) = V(X) = 1.543 and σY = σX = 1.242. 

 
 
71.  

a. Possible values of X are 5, 6, 7, 8, 9, 10. (In order to have less than 5 of the granite, there would have 
to be more than 10 of the basaltic).  X is hypergeometric, with n = 15, N = 20, and M = 10. So, the pmf 
of X is 

p(x) = h(x; 15, 10, 20) = 

10 10
15
20
15

x x
  
  −  

 
 
 

.   

 The pmf is also provided in table form below. 
 

x 5 6 7 8 9 10 

p(x) .0163 .1354 .3483 .3483 .1354 .0163 
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b. P(all 10 of one kind or the other) = P(X = 5) + P(X = 10) = .0163 + .0163 = .0326. 

 

c. μ = 1015
20

Mn
N

⋅ = ⋅ = 7.5; V(X) = 20 15 10 1015 1
20 1 20 20
−    −    −    

= .9868; σ = .9934. 

 
μ ± σ = 7.5 ± .9934 = (6.5066, 8.4934), so we want P(6.5066 < X < 8.4934). That equals 
P(X = 7) + P(X = 8) = .3483 + .3483 = .6966. 

 
 
72.  

a. There are N = 11 candidates, M = 4 in the “top four” (obviously), and n = 6 selected for the first day’s 
interviews. So, the probability x of the “top four” are interviewed on the first day equals h(x; 6, 4, 11) = 

4 7
6

11
6

x x
  
  
  −

 
 
 

. 

 

b. With X = the number of “top four” interview candidates on the first day, E(X) = ·n M
N

= 6 4·
11

= 2.18. 

 
73.  

a. The successes here are the top M = 10 pairs, and a sample of n = 10 pairs is drawn from among the N 

= 20. The probability is therefore h(x; 10, 10, 20) = 

10 10
10
20
10

x x
  
  
  

 
 
 

−
. 

 
b. Let X = the number among the top 5 who play east-west.  (Now, M = 5.)  

Then P(all of top 5 play the same direction) = P(X = 5) + P(X = 0) =  

h(5; 10, 5, 20) + h(5; 10, 5, 20) = 

15 15
5 10

.033
20 20
10 1

5
5

0

5
0

     
     
     + =
   
   
   

. 

 
c. Generalizing from earlier parts, we now have N = 2n; M = n. The probability distribution of X is 

hypergeometric: p(x) = h(x; n, n, 2n) = 
2

n n
x n x

n
n

  
  
  −

 
 
 

 for x = 0, 1, …, n. Also, 

E(X) = 1
2 2
nn n
n

⋅ =  and V(X) = 
22 1

4(2 12 2 )1 2
n n n nn

nn n n
n−   ⋅ ⋅ ⋅ − =   

   −−
. 
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74.  

a. Hypergeometric, with n = 10, M = 15, and N = 50: p(x) = h(x; 10, 15, 50). 
 
b. When N is large relative to n, The hypergeometric model can be approximated by an appropriate 

binomial model: h(x ;n ,M ,N) ; , Mb x n
N

 =  
 


 . So, h(x; 10, 150, 500) ( ;10,.3)b x=


. 

 

c. Using the hypergeometric model, E(X) = 15010
500

 ⋅ 
 

= 3 and  

V(X) = 490 (10)(.3)(.7) .982(2.1) 2.06
499

= = . Using the binomial model, E(X) = (10)(.3) = 3, the same as 

the mean of the exact model, and V(X) = 10(.3)(.7) = 2.1, slightly more than the exact variance. 
 
 
75. Let X = the number of boxes that do not contain a prize until you find 2 prizes. Then X ~ NB(2, .2). 

a. With S = a female child and F = a male child, let X = the number of F’s before the 2nd S.  Then  

P(X = x) = nb(x; 2, .2) = 22 1
(.2) (1 .2)

2 1
xx 

 


−


+ −
−

= (x + 1)(.2)2(.8)x. 

 
b. P(4 boxes purchased) = P(2 boxes without prizes) = P(X = 2) = nb(2; 2, .2) = (2 + 1)(.2)2(.8)2 = .0768. 
 

c. P(at most 4 boxes purchased) = P(X ≤ 2) = 
2

0
( ;2,.8)

x
nb x

=
∑ = .04 + .064 + .0768 = .1808. 

 

d. E(X) = (1 ) 2(1 .2)
.2

r p
p
− −

=  = 8. The total number of boxes you expect to buy is 8 + 2 = 10. 

 
 
76. This question relates to the negative binomial distribution, but we can’t use it directly (X, as it’s defined, 

doesn’t fit the negative binomial description).  Instead, let’s reason it out.  
Clearly, X can’t be 0, 1, or 2.   
P(X = 3) = P(BBB or GGG) = (.5)3 + (.5)3 = .25.  
P(X = 4) = P(BBGB or BGBB or GBBB or GGBG or GBGG or BGGG) = 6(.5)4 = .375.  
P(X = 5) look scary until we realize that 5 is the maximum possible value of X!  
(If you have 5 kids, you must have at least 3 of one gender.) So, P(X = 5) = 1 – .25 – .375 = .375, and that 
completes the pmf of X. 
 

x 3 4 5 
p(x) .25 .375 .375 
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77. This is identical to an experiment in which a single family has children until exactly 6 females have been 

born (since p = .5 for each of the three families). So,  

p(x) = nb(x; 6, .5) = 6 65 5
(.5) (1 .5) (.5)

5 5
x xx x +   
=   −

  

+



+
. Also, E(X) = (1 ) 6(1 .5)

.5
r p

p
− −

= = 6; notice this is 

just 2 + 2 + 2, the sum of the expected number of males born to each family. 
 
 

78. The geometric pmf is given by p(y) =  (1 – p)yp = (.591)y(.409) for y = 0, 1, 2, …. 
a. P(Y = 3) = (.591)3(.409) = .0844. P(Y ≤ 3) = P(Y = 0, 1, 2, 3) = (.409)[1 + (.591) + (.591)2 + (.591)3] = 

.878. 
 

b. Using the negative binomial formulas with r = 1, 1 .591
. 9

(
0

)
4

p
p

E Y −
== = 1.445 

and 2 2

1 .591
(.409)

( ) pV Y
p
−

= = = 3.533, so SD(Y) = 1.88. The probability a drought length exceeds its mean 

by at least one standard deviation is P(Y ≥ μ + σ) = P(Y ≥ 1.445 + 1.88) = P(Y ≥ 3.325) =  
1 – P(Y < 3.325) = 1 – P(Y ≤ 3) = 1 – .878 from part a = .122. 

Section 3.6 
 
79. All these solutions are found using the cumulative Poisson table, F(x; μ) = F(x; 1). 

a. P(X ≤ 5) = F(5; 1) = .999. 
 

b. P(X = 2) = 
1 2

2!
1e−

= .184. Or, P(X = 2) = F(2; 1) – F(1; 1) = .920 – .736 = .184. 

 
c. P(2 ≤ X ≤ 4) = P(X ≤ 4) – P(X ≤ 1) = F(4; 1) – F(1; 1) = .260. 
 
d. For X Poisson, σ = µ = 1, so P(X > µ + σ) = P(X > 2) = 1 – P(X ≤ 2) = 1 – F(2; 1) = 1 – .920 = .080. 

 
80. Solutions are found using the cumulative Poisson table, F(x; μ) = F(x; 4). 

a. P(X ≤ 4) = F(4; 4) = .629, while P(X < 4) = P(X ≤ 3) = F(3; 4) = .434. 
 
b. P(4 ≤ X ≤ 8) = F(8; 4) – F(3; 4) = .545. 
 
c. P(X ≥ 8) = 1 – P(X < 8) = 1 – P(X ≤ 7) = 1 – F(7; 4) = .051. 
 
d. For this Poisson model, μ = 4 and so σ = 4 = 2. The desired probability is P(X ≤ μ + σ) = P(X ≤ 4 + 

2) = P(X ≤ 6) = F(6; 4) = .889. 
 
81. Let X ~ Poisson(μ = 20). 

a. P(X ≤ 10) = F(10; 20) = .011. 
 

b. P(X > 20) = 1 – F(20; 20) = 1 – .559 = .441. 
 
c. P(10 ≤ X ≤ 20) = F(20; 20) – F(9; 20) = .559 – .005 = .554;  

P(10 < X < 20) = F(19; 20) – F(10; 20) = .470 – .011 = .459. 
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d. E(X) = μ = 20, so σ = 20 = 4.472. Therefore, P(μ – 2σ < X < μ + 2σ) =   

P(20 – 8.944 < X < 20 + 8.944)  = P(11.056 < X < 28.944) = P(X ≤ 28) – P(X ≤ 11) =  
F(28; 20) – F(11; 20) = .966 – .021 = .945. 

 
82.  

a. P(X = 1) = F(1; .2) – F(0; .2) = .982 – .819 = .163. 
 
b. P(X ≥ 2) = 1 – P(X ≤ 1) = 1 – F(1; .2) = 1 – .982 = .018. 
 

c. The probability a disk contains zero missing pulses is P(X = 0) = 
.2 0(.2)
0!

e−

= .819. Since the two disks 

are independent, P(1st doesn’t ∩ 2nd doesn’t) = P(1st doesn’t) ⋅ P(2nd doesn’t) 
 = (.819)(.819) = .671. 

 
83. The exact distribution of X is binomial with n = 1000 and p = 1/200; we can approximate this distribution 

by the Poisson distribution with μ = np = 5. 
a. P(5 ≤ X ≤ 8) = F(8; 5) – F(4; 5) = .492. 
 
b. P(X ≥ 8) = 1 – P(X ≤ 7) = 1 – F(7; 5) = 1 – .867 = .133. 

 
84.  

a. The experiment is binomial with n = 200 and p = 1/88, so μ = np = 2.27 and σ = npq = 2.247  = 
1.50. 
 

b. X has approximately a Poisson distribution with μ = 2.27, so P(X ≥ 2) = 1 – P(X = 0, 1) ≈  
2.27 0 2.27 12.271

0
2.
!
27

1!
e e− − 

− + 
 

 = 1 – .3378 = .6622. (The exact binomial answer is .6645.) 

 
c. Now µ = 352(1/88) = 4, so P(X < 5) = P(X ≤ 4) ≈ F(4; 4) = .629. 

 
85.  

a. μ = 8 when t = 1, so P(X = 6) =
8 68
6!

e−

 = .122; P(X ≥ 6) = 1 – F(5; 8) = .809; and  

P(X ≥ 10) = 1 – F(9; 8) = .283. 
 
b. t = 90 min = 1.5 hours, so μ = 12; thus the expected number of arrivals is 12 and the standard deviation 

is σ = 12 = 3.464. 
 
c. t = 2.5 hours implies that μ = 20. So, P(X ≥ 20) = 1 – F(19; 20) = .530 and  

P(X ≤ 10) = F(10; 20) = .011. 



Chapter 3:  Discrete Random Variables and Probability Distributions 

115 
 

 
86.  

a. The expected number of organisms in 1 m3 of water is 10, so X ~ Poisson(10).  
P(X ≥ 8) = 1 – P(X ≤ 7) = 1 – F(7; 10) = 1 – .220 = .780. 

 
b. The expected number of organisms in 1.5 m3 of water is 10(1.5) = 15, so X ~ Poisson(15). Since X is 

Poisson, σ = 15µ =  = 3.87.  
P(X > µ + σ) = P(X > 15 + 3.87) = P(X > 18.87) = 1 – P(X ≤ 18.87) = 1 – P(X ≤ 18) = 1 – F(18; 15) =  
1 – .993 = .007. 

 
c. Let d equal the amount of discharge, so X ~ Poisson(10d). Set .999 = P(X ≥ 1) and solve for d: 

.999 = P(X ≥ 1) = 1 – P(X = 0) = 1 – 
10 0

10(10 )
0!

d
de d e

−
−=  ⇒ e–10d = .001 ⇒ d = –0.1 ln(.001) = 0.69 m3. 

 
87.  

a. For a two hour period the parameter of the distribution is μ = αt = (4)(2) = 8,  

so P(X = 10) = 
1088

10!
e−

 = .099. 

 

b. For a 30-minute period, αt = (4)(.5) = 2, so  P(X = 0) = 
2 02
0!

e−

= .135. 

 
c. The expected value is simply E(X) = αt = 2. 

 
 
88. Let X = the number of diodes on a board that fail. Then X ~ Bin(n = 200, p = .01). 
 

a. E(X) = np = (200)(.01) = 2; V(X) = npq = (200)(.01)(.99) = 1.98, so σ = 1.407. 
 
b. X has approximately a Poisson distribution with μ = np = 2, so P(X ≥ 4) = 1 – P(X ≤ 3) =  

1 – F(3; 2) = 1 – .857 = .143. 
 

c. For any one board, P(board works properly) = P(all diodes work) = P(X = 0) =
2 02
0!

e−

= .135. 

Let Y = the number among the five boards that work, a binomial rv with n = 5 and p = .135.   

Then P(Y ≥ 4) = P(Y = 4) + P(Y = 5) = 4 5 05 5
(.135) (.865) (.135) (.865)

4 5
   

+   
   

 = .00148. 

 
89. In this example, α = rate of occurrence = 1/(mean time between occurrences) = 1/.5 = 2. 

a. For a two-year period, μ = αt = (2)(2) = 4 loads. 
 
b. Apply a Poisson model with μ = 4: P(X > 5) = 1 – P(X ≤ 5) = 1 – F(5; 4) = 1 – .785 = .215. 
 
c. For α = 2 and the value of t unknown, P(no loads occur during the period of length t) =  

P(X = 0) = 
2 0

2

0!
(2 )t

te t e
−

−= . Solve for t: e–2t ≤ .1 ⇒ –2t ≤ ln(.1) ⇒ t ≥ 1.1513 years. 
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90. E(X) = 
1

0 1 1 0! ! ( 1)!
·

!
·

x x x y

x x x y

e e e ex x
x x x y

µ µ µ µµ µ µ µµ µ
− − − − −∞ ∞ ∞ ∞

= = = =

= = =
−∑ ∑ ∑ ∑ . Since the summation now represents the 

sum of a Poisson pmf across all its values, that summation is 1 and the result is indeed μ, as desired. 
 
 
91.  

a. For a quarter-acre (.25 acre) plot, the mean parameter is μ = (80)(.25) = 20, so P(X ≤ 16) = F(16; 20) = 
.221. 

 
b. The expected number of trees is α⋅(area) = 80 trees/acre (85,000 acres) = 6,800,000 trees. 
 
c. The area of the circle is πr2 = π(.1)2 = .01π = .031416 square miles, which is equivalent to 

.031416(640) = 20.106 acres.  Thus X has a Poisson distribution with parameter μ = α(20.106) = 
80(20.106) = 1608.5. That is, the pmf of X is the function p(x; 1608.5). 

 
92.  

a. Let Y denote the number of cars that arrive in the hour, so Y ~ Poisson(10). Then  
P(Y = 10 and no violations) = P(Y = 10) ⋅ P(no violations | Y = 10) =  

10 1010
10!

e−

 ⋅ (.5)10, assuming the violation statuses of the 10 cars are mutually independent. This 

expression equals .000122. 
 
b. Following the method from a, P(y arrive and exactly 10 have no violations) = 

P(y arrive) ⋅ P(exactly 10 have no violations | y arrive) =   
1010

!

ye
y

−

 ⋅ P(exactly 10 “successes” in y trials when p = .5) =  

1010
!

ye
y

−

 ⋅ 10 10(.5) (.5)
10

yy − 
 
 

=
10 ! (.5)

10!( 10)!
10
!

y
ye

y
y

y

−

−
 =

105
10!( 10)!

ye
y

−

−
 

 

c. P(exactly 10 without a violation) = 
10

10

5
10!( 10)!

y

y

e
y

−∞

= −∑ = 
10 10 10

10

5 5
10! ( 10)!

y

y

e
y

− −∞

=

⋅
−∑  = 

10 10

0

5 5
10! !

u

u

e
u

− ∞

=

⋅ ∑  = 

10 10
55

10!
e e
− ⋅

⋅ = 
5 105
10!

e− ⋅ = p(10; 5).   

 In fact, generalizing this argument shows that the number of “no-violation” arrivals within the hour has 
a Poisson distribution with mean parameter equal to μ = αp = 10(.5) = 5. 

 
 
93.  

a. No events occur in the time interval (0, t + ∆t) if and only if no events occur in (0, t) and no events 
occur in (t, t + ∆t).  Since it’s assumed the numbers of events in non-overlapping intervals are 
independent (Assumption 3), 
P(no events in (0, t + ∆t)) = P(no events in (0, t)) · P(no events in (t, t + ∆t)) ⇒ 
P0(t + ∆t) = P0(t) ⋅ P(no events in (t, t + ∆t)) =  P0(t) · [1 – α∆t – o(∆t)] by Assumption 2. 
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b. Rewrite a as P0(t + ∆t) = P0(t) – P0(t)[α∆t + o(∆t)], so P0(t + ∆t) – P0(t) = –P0(t)[α∆t + o(∆t)] and 
0 0

0 0
( ) ( ) ( )( ) ( )P t t P t o tP t P t

t t
α+ ∆ − ∆

= − − ⋅
∆ ∆

. Since ( ) 0o t
t
∆
∆

→  as ∆t → 0 and the left-hand side of the 

equation converges to 0 ( )dP t
dt

as ∆t → 0, we find that 0 ( )dP t
dt

 = –αP0(t). 

 

c. Let P0(t) = e–αt. Then 0 ( )dP t
dt

= d
dt

[e–αt] = –αe–αt
  = –αP0(t), as desired. (This suggests that the 

probability of zero events in (0, t) for a process defined by Assumptions 1-3 is equal to e–αt.) 

d. Similarly, the product rule implies 
1( ) ( ) ( )

! ! !

t k t k t kd e t e t k e t
dt k k k

α α αα α α α α− − − −  −
= + 

 
= 

1( ) ( )
! ( 1)!

t k t ke t e t
k k

α αα αα α
− − −

− +
−

 = –αPk(t) + αPk–1(t), as desired. 

Supplementary Exercises 
 
94. Outcomes are (1,2,3) (1,2,4) (1,2,5) … (5,6,7); there are 35 such outcomes, each having probability 35

1 .  
The W values for these outcomes are 6 (= 1 + 2 + 3), 7, 8, …, 18.  Since there is just one outcome with W 
value 6, p(6) = P(W = 6) = 35

1 .  Similarly, there are three outcomes with W value 9 [(1,2,6) (1,3,5) and 

(2,3,4)], so p(9) = 35
3 .  Continuing in this manner yields the following distribution: 

 
w 6 7 8 9 10 11 12 13 14 15 16 17 18 

p(w) 35
1  35

1  35
2  35

3  35
4  35

4  35
5  35

4  35
4  35

3  35
2  35

1  35
1  

Since the distribution is symmetric about 12, μ = 12, and σ2 =  
18

2

6
( 12) ( )

w
w p w

=

−∑ =  

35
1 [(–6)2(1) + (–5)2(1) + … + (5)2(1) + (6)2(1)] = 8. 

 
95.  

a. We’ll find p(1) and p(4) first, since they’re easiest, then p(2).  We can then find p(3) by subtracting the 
others from 1. 
p(1) = P(exactly one suit) = P(all ♠) + P(all ♥) + P(all ♦) + P(all ♣) =  

4 · P(all ♠) = 

39
0

13
5

4 .00198
52
5

  
  
  ⋅ =
 
 
 

, since there are 13 ♠s and 39 other cards. 

 p(4) = 4 · P(2 ♠, 1 ♥, 1 ♦, 1 ♣) = 

13 1313
2

4 .26375
52
5

13
1 1 1

    
    
    ⋅ =

 
 
 

. 

p(2) = P(all ♥s and ♠s, with ≥ one of each) + … + P(all ♦s and ♣s with ≥ one of each) = 
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4
2
 
 
 

· P(all ♥s and ♠s, with ≥ one of each) =  

6 · [P(1 ♥ and 4 ♠) + P(2 ♥ and 3 ♠) + P(3 ♥ and 2 ♠) + P(4 ♥ and 1 ♠)] = 
13 13 13 13
4 1 3 2 18,590 44,6166 2 2 6 .14592

52 52 2,598,960
5 5

      
       +       ⋅ ⋅ + ⋅ = =       
    

    

. 

 Finally, p(3) = 1 – [p(1) + p(2) + p(4)] = .58835. 

b. μ  = 
4

1
( ) 3.114

x
x p x

=

⋅ =∑ ; σ2 =
4

2 2

1
( ) (3.114) .405

x
x p x

=

 
⋅ − = 

 
∑  ⇒ σ = .636. 

 
96. p(y) = P(Y = y) = P(exactly y trials to achieve r S’s) = P(exactly r – 1 S’s in the first y– 1 trials, then a S) = 

P(exactly r – 1 S’s in the first y– 1 trials) · P(S) = 
1 ( 1) ( 1)1 1
(1 ) (1 )

1 1
·r y r r y ry y

p p p p
r

p
r

− − − − −− −   
− = −   − −   

for y = r, r + 1, r + 2, … 

 
 
97.  

a. From the description, X ~ Bin(15, .75). So, the pmf of X is b(x; 15, .75). 
 
b. P(X > 10) = 1 – P(X ≤ 10) = 1 – B(10;15, .75) = 1 – .314 = .686. 
 
c. P(6 ≤ X ≤ 10) = B(10; 15, .75) – B(5; 15, .75) = .314 – .001 = .313. 
 
d. μ = (15)(.75) = 11.75, σ2= (15)(.75)(.25) = 2.81. 
 
e. Requests can all be met if and only if X ≤ 10, and 15 – X ≤ 8, i.e. iff 7 ≤ X ≤ 10. So,  

P(all requests met) = P(7 ≤ X ≤ 10) = B(10; 15, .75) – B(6; 15, .75) = .310. 
 
98.  

a. First, consider a Poisson distribution with µ = θ. Since the sum of the pmf across all x-values (0, 1, 2, 
3, …) must equal 1, 

1 = 
0

0 1 1! 0! ! !

x x

x x x

xe e e ee
x x x

θ θ θ θ
θθ θ θ θ− − − −∞ ∞ ∞
−

= = =

= + = +∑ ∑ ∑  ⇒ 
1 !x

xe
x

θθ
=

−∞

∑ = 1 – e–θ   

Also, the sum of the specified pmf across x = 1, 2, 3, … must equal 1, so 

1 = 
1 1! !x

x x

x

e ek k
x x

θ θθ θ− −∞ ∞

= =

=∑ ∑ = k[1 – e–θ] from above. Therefore, k = 
1

1 e θ−−
. 

 
b. Again, first consider a Poisson distribution with µ = θ. Since the expected value is θ, 

0 1 1
( ; ) 0 ( ; )

!

x

x x x

ex p x x p x x
x

θθθ θ θ
−∞ ∞ ∞

= = =

= ⋅ = + ⋅ = ⋅∑ ∑ ∑ .  Multiply both sides by k: 

1 1! !

x x

x x

e ek k x x k
x x

θ θθ θθ
− −∞ ∞

= =

= ⋅ = ⋅∑ ∑ ; the right-hand side is the expected value of the specified 

distribution. So, the mean of a “zero-truncated” Poisson distribution is kθ, i.e. 
1 e θ

θ
−−

. 



Chapter 3:  Discrete Random Variables and Probability Distributions 

119 
 

The mean value 2.313035 corresponds to θ = 2: 2

2
1 e−−

= 2.313035. And so, finally, 

P(X ≤ 5) = 
5 5

1 1

2

2

2
! 1 !x x

x xek e
x xe

θθ− −

−
= =−

=∑ ∑ = .9808. 

 
c. Using the same trick as in part b, the mean-square value of our distribution is 

2 2 2

1 1 0! ! !

x x x

x x x

e e ex k k x k x
x x x

θ θ θθ θ θ− − −∞ ∞ ∞

= = =

⋅ = ⋅ = ⋅∑ ∑ ∑ = k · E(Y2), where Y ~ Poisson(θ).  

For any rv, V(Y) = E(Y2) – µ2 ⇒ E(Y2) = V(Y) + µ2; for the Poisson(θ) rv, E(Y2) = θ + θ2. Therefore, the 
mean-square value of our distribution is k · (θ + θ2), and the variance is 
V(X) = E(X2) – [E(X)]2 = k · (θ + θ2) – (kθ)2 = kθ + k(1 – k)θ2. Substituting θ = 2 gives  
V(X) ≈ 1.58897, so σX ≈ 1.2605. 

 
99. Let X = the number of components out of 5 that function, so X ~ Bin(5, .9).  Then a 3-out-of 5 system 

works when X is at least 3, and P(X ≥ 3) = 1 – P(X ≤ 2) = 1 – B(2; 5, .9) = .991. 
 
100.  

a. Let X denote the number of defective chips in the sample of 25, so X ~ Bin(25, .05). Then the batch 
will be rejected with probability P(X ≥ 5) = 1 – P(X ≤ 4) = 1 – B(4; 25, .05) = .007. 

 
b. Now X ~ Bin(25, .10), so P(X ≥ 5) = 1 – B(4; 25, .10) = .098. 
 
c. Now X ~ Bin(25, .20), P(X ≥ 5) = 1 – B(4;25,.20) = .579. 
 
d. All of the probabilities would decrease, since the criterion for rejecting a batch is now more lax. That’s 

bad if the proportion of defective chips is large and good if the proportion of defective chips is small. 
 
101.  

a. X ~ Bin(n = 500, p = .005). Since n is large and p is small, X can be approximated by a Poisson 

distribution with μ = np = 2.5. The approximate pmf of X is p(x; 2.5) =
2.5 2

!
.5xe

x

−

. 

 

b. P(X = 5) =
2.5 52
5

.5
!

e−

= .0668. 

 
c. P(X ≥ 5) = 1 – P(X ≤ 4) = 1 – p(4; 2.5) = 1 – .8912 = .1088. 
 

 
102. X  ~ Bin(25, p).   

a. P(7 ≤ X ≤ 18) = B(18; 25, .5) – B(6; 25, .5) = .986. 
 
b. P(7 ≤ X ≤ 18) = B(18; 25, .8) – B(6; 25, .8) = .220. 
 
c. With p = .5, P(rejecting the claim) = P(X ≤ 7) + P(X ≥ 18)  =  .022 + [1 – .978] = .022 + .022 = .044. 

 
d. The claim will not be rejected when 7 < X < 18, i.e. when 8 ≤ X ≤ 17.   

With p = .6, P(8 ≤ X ≤ 17) = B(17; 25, .6) – B(7; 25, .6) = .846 – .001 = .845. 
With p = .8, P(8 ≤ X ≤ 17) = B(17; 25, .8) – B(7; 25, .8) = .109 – .000 = .109. 
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e. We want P(rejecting the claim when p = .5) ≤ .01.   

Using the decision rule “reject if X ≤ 6 or X ≥ 19” gives the probability .014, which is too large.  We 
should use “reject if X ≤ 5 or X ≥ 20,” which yields P(rejecting the claim) =  
.002 + .002 = .004. 

 
103. Let Y denote the number of tests carried out.   

For n = 3, possible Y values are 1 and 4.  P(Y = 1) = P(no one has the disease) = (.9)3 = .729 and P(Y = 4) = 
1 – .729 = .271, so E(Y) = (1)(.729) + (4)(.271) = 1.813, as contrasted with the 3 tests necessary without 
group testing.  
For n = 5, possible values of Y are 1 and 6. P(Y = 1) = P(no one has the disease) =  (.9)5 = .5905, so        
P(Y = 6) = 1 – .5905 = .4095 and E(Y) = (1)(.5905) + (6)(.4095) = 3.0475, less than the 5 tests necessary 
without group testing. 

 
104. Regard any particular symbol being received as constituting a trial.  Then P(success) =  

P(symbol is sent correctly, or is sent incorrectly and subsequently corrected) = (1 – p1) + p1p2.  The block 
of n symbols gives a binomial experiment with n trials and p = 1 – p1 + p1p2. 

 
105. p(2) = P(X = 2) = P(SS) = p2, and p(3) = P(FSS) = (1 – p)p2.  

 
For x ≥ 4, consider the first x – 3 trials and the last 3 trials separately. To have X = x, it must be the case 
that the last three trials were FSS, and that two-successes-in-a-row was not already seen in the first x – 3 
tries.  
 
The probability of the first event is simply (1 – p)p2.  
The second event occurs if two-in-a-row hadn’t occurred after 2 or 3 or … or x – 3 tries. The probability of 
this second event equals 1 – [p(2) + p(3) + … + p(x – 3)]. (For x = 4, the probability in brackets is empty; 
for x = 5, it’s p(2); for x = 6, it’s p(2) + p(3); and so on.) 
 
Finally, since trials are independent, P(X = x) = (1 – [p(2) + … + p(x – 3)]) · (1 – p)p2. 
 
For p = .9, the pmf of X up to x = 8 is shown below. 
 

x 2 3 4 5 6 7 8 
p(x) .81 .081 .081 .0154 .0088 .0023 .0010 

 
So, P(X ≤ 8) = p(2) + … + p(8) = .9995. 

 
 
106.  

a. With X ~ Bin(25, .1), P(2 ≤ X ≤ 6) = B(6; 25, .1) – B(1; 25, .1) = .991 – .271 = 720. 
 
b. E(X) = np = 25(.1) = 2.5, SD(X) = 25(.1)(.9) 2.25npq = = = 1.5. 
 
c. P(X ≥ 7 when p = .1) = 1 – B(6; 25, .1) = 1 – .991 = .009. 
 
d. P(X ≤ 6 when p = .2) = B(6; 25, .2) = .780, which is quite large. 
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107.  

a. Let event A = seed carries single spikelets, and event B = seed produces ears with single spikelets.  
Then P(A ∩ B) = P(A) · P(B | A) = (.40)(.29) = .116.   
Next, let X = the number of seeds out of the 10 selected that meet the condition A ∩ B. Then X ~ 

Bin(10, .116). So, P(X = 5) = 5 510
(.116) (.884) .002857

5
 

= 
 

. 

 
b. For any one seed, the event of interest is B = seed produces ears with single spikelets.          Using the 

law of total probability, P(B) =  P(A ∩ B) + P(A′ ∩ B) = (.40)(.29) + (.60)(.26) = .272. 
Next, let Y = the number out of the 10 seeds that meet condition B. Then Y ~ Bin(10, .272). P(Y = 5) = 

5 510
(.272) (1 .272)

5
−

 
 
 

= .0767, while  

P(Y ≤ 5) = 
5

10

0

10
(.272) (1 .272)y y

y y
−

=

 
 
 

−∑ = .041813 + … + .076719 = .97024. 

 
 
108. With S = favored acquittal, the population size is N = 12, the number of population S’s is M = 4, the sample 

size is n = 4, and the pmf of the number of interviewed jurors who favor acquittal is the hypergeometric 

pmf: h(x; 4, 4, 12). E(X) = 44
12
 ⋅ 
 

= 1.33. 

 
109.  

a. P(X = 0) = F(0; 2) or 
2 0

0!
2e−

 = 0.135. 

 
b. Let S = an operator who receives no requests.  Then the number of operators that receive no requests 

follows a Bin(n = 5, p = .135) distribution. So, P(4 S’s in 5 trials) = b(4; 5, .135) = 
4 15

(.135) (.865) .00144
4
 

= 
 

. 

 
c. For any non-negative integer x, P(all operators receive exactly x requests) =  

P(first operator receives x) ⋅ … ⋅ P(fifth operator receives x) = [p(x; 2)]5 = 
5

5

2 10 52
! ( !

2
)

x xe e
x x

−− 
= 

 
.  

Then, P(all receive the same number) = P(all receive 0 requests) + P(all receive 1 request) + P(all 

receive 2 requests) + … = 
5

0

10

5

2
( !)

x

x

e
x=

−∞

∑ . 

 
 
110. The number of grasshoppers within a circular region of radius R follows a Poisson distribution with μ = α · 

area = απR2.  

P(at least one) = 1 – P(none) = 1 – 
2 2 0( )

0!

Re Rαπ απ−

 = 1 – 
2Re απ− = .99 ⇒ 

2Re απ− = .01 ⇒ 
απ

)01ln(.2 −
=R  = 

.7329 ⇒ R = .8561 yards. 
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111. The number of magazine copies sold is X so long as X is no more than five; otherwise, all five copies are 

sold. So, mathematically, the number sold is min(X, 5), and E[min(x, 5)] = 
0
min( ,5) ( ;4)

x
x p x

∞

=
∑ = 0p(0; 4) + 

1p(1; 4) + 2p(2; 4) + 3p(3; 4) + 4p(4; 4) + 
5
5 ( ;4)

x
p x

∞

=
∑ = 

1.735 + 
5

5 ( ;4)
x

p x
∞

=
∑  = 1.735 + 5

4

0
1 ( ;4)

x
p x

=

 
− 

 
∑  = 1.735 + 5[1 – F(4; 4)] = 3.59. 

 
112.  

a. P(X = x) = P(A wins in x games) + P(B wins in x games) = 
P(9 S’s in 1st x – 1 ∩ S on the xth) + P(9 F’s in 1st x – 1 ∩ F on the xth) = 

9 ( 1) 91
(1 ) ·

9
xx

p p p− −− 
− 

 
 + 9 ( 1) 91

( ·1 ) (1 )
9

xx
p p p− −− 

− − 
 

 = 

10 10 10 101
(1 ) (1 )

9
x xx

p p p p− −−   − + −    
. 

 
b. Possible values of X are now all positive integers ≥ 10: 10, 11, 12, …. Similar to a,  

P(X = x) = P(A wins in x games) + P(B wins in x games) = 
P(9 S’s in 1st x – 1 ∩ S on the xth) + P(9 F’s in 1st x – 1 ∩ F on the xth) = 

9 ( 1) 91
(1 ) ·

9
xx

p p p− −− 
− 

 
 + 9 ( 1) 91

(1 ) ·
9

xx
q q q− −− 

− 
 

 = 

10 10 10 101
(1 ) (1 )

9
x xx

p p q q− −−   − + −    
. Finally,  

P(X ≥ 20) = 1 – P(X < 20) = 
19

10 10 10 10

10

1
(1 ) (1 )

9
x x

x

x
p p q q− −

=

−   − + −    
∑ . 
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113.  

a. No, since the probability of a “success” is not the same for all tests. 
 
b. There are four ways exactly three could have positive results.  Let D represent those with the disease 

and D′ represent those without the disease. 
 

Combination Probability 
D D′  
0 
 

3 
0 5 3 25 5

(.2) (.8) (.9) (.1)
0 3

      
⋅      

        
=(.32768)(.0729) = .02389 

 
1 2 

1 4 325 5
(.2) (.8) (.9) (.1)

1 2
      

⋅      
        

=(.4096)(.0081) = .00332 
 

2 1 
2 3 1 45 5

(.2) (.8) (.9) (.1)
2 1

      
⋅      

        
=(.2048)(.00045) = .00009216 

 
3 0 

3 2 0 55 5
(.2) (.8) (.9) (.1)

3 0
      

⋅      
        

=(.0512)(.00001) = .000000512 
 

Adding up the probabilities associated with the four combinations yields 0.0273. 
 

114. The coefficient k(r ,x) is the generalized combination formula ( 1)( )2
!

()x r x r
x

r+ − + −  . 

With r = 2.5 and p = .3, P(X = 4) = 2.5 4(5.5)(4.5)(3.5)(2.5) (.3) (.7) .1068
4!

= ; 

using k(r, 0) = 1, P(X ≥ 1) = 1 – P(X = 0) = 1 – (.3)2.5 = .9507. 
 
 
115.  

a. Notice that p(x; μ1, μ2) = .5 p(x; μ1) + .5 p(x; μ2), where both terms p(x; μi) are Poisson pmfs. Since both 
pmfs are ≥ 0, so is p(x; μ1, μ2). That verifies the first requirement.   

Next,
0 0 0

1 2 1 2( ; , ) ( ; ) ( ;.5 .5 )
x x x

p x p x p xµ µµ µ
∞ ∞ ∞

= = =

= +∑ ∑ ∑ = .5 + .5 = 1, so the second requirement for a pmf is 

met. Therefore, p(x; μ1, μ2) is a valid pmf. 
 

b. E(X) = 1 2
0

· ( ; , )
x

p xx µ µ
∞

=
∑ = 1

0
2) .5 ( ; )][.5 ( ;

x
p xx p x µ µ

∞

=

+∑ =
0

1
0

2· ) · ( ; ).5 ( ; .5
x x

px p x x xµ µ
∞ ∞

= =

+∑ ∑ = .5E(X1) + 

.5E(X2), where Xi ~ Poisson(μi). Therefore, E(X) = .5μ1 + .5μ2. 
 

c. This requires using the variance shortcut. Using the same method as in b,  
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E(X2) = 
0 0

2 2
1 2· ) · ( ; ).5 ( ; .5

x x
x p x x p xµ µ

∞ ∞

= =

+∑ ∑  = 2 2
1 2. ) .5 )( (5 X E XE + . For any Poisson rv,     

E(X2) = V(X) + [E(X)]2 = μ + μ2, so  E(X2) = 2 2
1 1 2 2( ) .5(.5 )µ µ µ µ+ + + .  

Finally, V(X) = 2 2
1 1 2 2( ) .5(.5 )µ µ µ µ+ + +  – [.5μ1 + .5μ2]2, which can be simplified to equal .5μ1 + .5μ2 

+ .25(μ1 – μ2)2. 
 

d. Simply replace the weights .5 and .5 with .6 and .4, so p(x; μ1, μ2) = .6 p(x; μ1) + .4 p(x; μ2). 
 
 
116.  

a. ( 1; , ) ( ) 1
( ; , ) ( 1) (1 )

b x n p n x p
b x n p x p

=
+ −

= ⋅ >
+ −

  if np – (1 – p) > x, from which the stated conclusion follows. 

 

b. ( 1; ) 1
( ; ) ( 1)

p x
p x x

µ µ
µ

=
+

= >
+

  if x < μ – 1, from which the stated conclusion follows.  If μ is an integer, 

then μ – 1 is a mode, but p(μ; μ) = p(μ – 1; μ) so μ is also a mode. 
 
 

117. P(X = j) = 
10

1i
P

=
∑ (arm on track i ∩ X = j) = 

10

1i
P

=
∑ (X = j | arm on i) ⋅ pi = 

 
10

1i
P

=
∑ (next seek at i + j + 1 or i – j – 1) ⋅ pi  = 

10

1 1
1

( )i j i j i
i

p p p+ + − −
=

+∑ , where in the summation we take pk = 0 

if k < 0 or k > 10. 
 
 

118. E(X) = 
0

n

x

M N M
x n x

x
N
n

=

−  
  −  ⋅ =

 
 
 

∑
1

!
( 1)!( )!n

x

N MM
n xx M x

N
n

=

− 
⋅ −− −   =

 
 
 

∑  

 
1

1
11
1

n

x

N M
M n xMn

NxN
n

=

− 
 − −   ⋅ =  −−   
 − 

∑
1

0

1 ( 1)
1 1

1
1

n

y

N M
M n yMn

NyN
n

−

=

− − − 
 − − −   ⋅ =  −  

 − 

∑  

 
1

0
( ; 1, 1, 1)

n

y

M Mn h y n M N n
N N

−

=

⋅ − − − = ⋅∑ . 

 
 

119. Using the hint, 2 2 2

al

2

l :| :| :

2

| |||
( ) ( ) ( ) ( ) ( ) ( ) ( )

x x x x x x xk k k
x p x x p x k p x k p x

µ σ µ σ µ σ

µ µ σσ
≥ ≥− − ≥−

− ≥ − ≥ =∑ ∑ ∑ ∑ .   

The left-hand side is, by definition, σ2. On the other hand, the summation on the right-hand side represents 
P(|X – µ| ≥ kσ).  
So  σ2 ≥ k2 σ2⋅ P(|X – µ| ≥ kσ), whence P(|X – µ| ≥ kσ) ≤ 1/k2. 
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120.  

a. For [0, 4], μ = 
4 2 .6

0

te dt+∫  = 123.44; for [2, 6], μ = 
6 2 .6

2

te dt+∫  = 409.82. 

 
b. μ = 

0.9907 2 .6

0

te dt+∫   = 9.9996 ≈ 10, so the desired probability is F(15; 10) = .951. 

 
121.  

a. Let A1 = {voice}, A2 = {data}, and X = duration of a call. Then E(X) = E(X|A1)P(A1) + E(X|A2)P(A2) = 
3(.75) + 1(.25) = 2.5 minutes. 

 
b. Let X = the number of chips in a cookie. Then E(X) = E(X|i = 1)P(i = 1) + E(X| i = 2)P(i = 2) +  

E(X| i = 3)P(i = 3). If X is Poisson, then its mean is the specified μ — that is, E(X|i) = i + 1. Therefore, 
E(X) = 2(.20) + 3(.50) + 4(.30) = 3.1 chips. 

 
122. For x = 1, 2, …, 9, p(x) = (1 – p)x–1p, representing x – 1 failed transmissions followed by a success. 

Otherwise, if the first 9 transmissions fail, then X = 10 regardless of the 10th outcome, so p(10) = (1 – p)9. 
(Obviously, p(x) = 0 for x other than 1, 2, … , 10.) 

E(X) = 
9

1 9

1
·(1 ) 10 (1 )x

x
x p p p−

=

 
− + − 

 
∑  , which can be simplified to 

p
p 10)1(1 −−  .  

 



 126 

CHAPTER 4 
 

Section 4.1 
 
1.  

a. The pdf is the straight-line function graphed below on [3, 5]. The function is clearly non-negative; to 
verify its integral equals 1, compute: 

 
 

5 52 2 2

33
(.0375(5)(.075 .2) .0375 .2 .2(5)) (.0375(3) .2(3))x dx x x+ = + + − + =∫  

= 1.9375 – .9375 = 1 
 

5.04.54.03.53.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

x

f(x
)

 
 
b. P(X ≤ 4) = 

4 2 2 2

33

4
(.0375(4)(.075 .2) .0375 .2 .2(4)) (.0375(3) .2(3))x dx x x+ = + + − + =∫  

= 1.4 – .9375 = .4625. Since X is a continuous rv, P(X < 4) = P(X ≤ 4) = .4625 as well. 
 
c. P(3.5 ≤ X ≤ 4.5) = 

4.5 4.52

3.53.5
(.075 .2) .0375 .2 .5x dx x x+ = + = =∫  . 

P(4.5 < X) = P(4.5 ≤ X) = 
5 52

4.54.5
(.075 .2) .0375 .2 .278125x dx x x+ = + = =∫  . 

 
 
2. f(x) = 10

1  for –5 ≤ x ≤ 5 and = 0 otherwise 

a. P(X < 0) = 
0

1
105

.5dx
−

=∫ . 

 
b. P(–2.5 < X < 2.5) = 

2.5
1

102.5
.5dx

−
=∫ . 

 
c. P(–2 ≤ X ≤ 3) = 

3
1

102
.5dx

−
=∫ . 

 
d. P(k < X < k + 4) = ]1

4 41 1
10 1010 [( 4) ] .4

k k

kk
xdx k k

+ +
= = + − =∫ . 
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3.  

a.  

x

f(
x)

3210-1-2-3

0.4

0.3

0.2

0.1

0.0

 

b. P(X > 0) = 
232 2

0
0

.09375(4 ) .09375 4 .5
3
xx dx x

 
− = − = 

 
∫ .  

This matches the symmetry of the pdf about x = 0. 
 
c. P(–1 < X < 1) = 

1 2

1
.09375(4 ) .6875x dx

−
− =∫ . 

 

d. P(X < –.5 or X > .5) = 1 – P(–.5 ≤ X ≤ .5) = 1 – ∫− −
5.

5.

2 )4(09375. dxx  = 1 – .3672 = .6328. 

 
 
4.  

a. ] 1)1(0);( 0
2/

0

2/
2

2222
=−−=−==

∞−∞ −∞

∞− ∫∫ θθ

θ
θ xx edxexdxxf  

 

b. P(X ≤ 200) = ∫∫ −

∞−
=

200

0

2/
2

200 22
);( dxexdxxf x θ

θ
θ ] 8647.11353.

200
0

2/ 22
=+−≈−= − θxe . 

P(X < 200) = P(X ≤ 200) ≈ .8647, since X is continuous. 
P(X ≥ 200) = 1 – P(X < 200) ≈ .1353. 

 

c. P(100 ≤ X ≤ 200) = 
200

100
( ; )f x dxθ∫ =

2 200
/20,000

100
.4712xe− − ≈ . 

 

d. For x > 0, P(X ≤ x) = ( ; )
x

f y dyθ
−∞

=∫
2 2/2

20

x yy e dxθ

θ
−∫

2 2 2 2/2 /2

0
1

x
y xe eθ θ− −= − = − . 
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5.  

a. 1 = 
3 2

2 2

0
0

8 3
3 3 8

( )f x dx kx dx kkx k∞

−∞


= = = ⇒ =


∫ ∫ . 

x
f(

x)
2.01.51.00.50.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

 
b. P(0 ≤ X ≤ 1) = 

1 12 33 1 1
8 8 800

.125x dx x = = =∫ . 

 
c. P(1 ≤ X ≤ 1.5) = ( ) ( )

1.5 1.5 3 32 33 3 191 1 1
8 8 8 2 8 6411

1 .296875x dx x = = − = =∫ . 

 
d. P(X ≥ 1.5) = 1 – 

2 22 33 1 1 3 1
8 8 8 81.51.5

3(2) (1.5) .578125x dx x == = −∫ . 

 
 

6.  
a.  

x

f(
x)

4.54.03.53.02.52.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

 
b. 1 = 

4 12 2

2 1

4 3[1 ( 3) ] [1 ]
3 4
kk x dx k u du k

−
− − = − = = ⇒ =∫ ∫  . 

 
c. P(X > 3) = 

4 23
43
[1 ( 3) ] .5x dx− − =∫ . This matches the symmetry of the pdf about x = 3. 

 

d. ( )
13/4 1/42 213 3 311

4 4 4 411/4 1/4

47[1 ( 3) ] [1 ] .367
128

P X x dx u du
−

≤ ≤ = − − = − = ≈∫ ∫ . 

 
e. P(|X – 3| > .5) = 1 – P(|X – 3| ≤ .5) = 1 – P(2.5 ≤ X ≤ 3.5) =  

.5 23
4.5

1 [ 1 .68751 ] .3125u du
−

= −− − = =∫  . 
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7.  

a. f(x) = 1 1 1
4.25 .20 4.05B A

= =
− −

 for .20 ≤ x ≤ 4.25 and = 0 otherwise. 

43210

0.25

0.20

0.15

0.10

0.05

0.00

X

D
en

si
ty

Distribution Plot
Uniform, Lower=0.2, Upper=4.25

 
b. P(X > 3) = 

4.25
1.25
4.05

1
4.053

dx =∫ = .309. 

 

c. P(µ – 1 ≤ X ≤ µ + 1) = 
1

2
4.054. 51

1
0 dx

µ

µ

+

−
=∫  = .494. (We don’t actually need to know µ here, but it’s clearly 

the midpoint of 2.225 mm by symmetry.) 
 

d. P(a ≤ X ≤ a + 1) = 1
4.04.05 5

1
1

a

a
dx

+
=∫ = .247. 

 
 
8.  

a.  

y

f(
y)

1086420

0.20

0.15

0.10

0.05

0.00

 

b. 
5 10

1 2 1
25 5 250 5

( ) ( )f y dy ydy y dy
∞

−∞
= + −∫ ∫ ∫  = 

5 102
2

50

2 1
50 5 50
y y y
  + −   

= 

 25 1 1 1(4 2) 2 1
50 2 2 2

  + − − − = + =    
 

 

c. P(Y ≤ 3) = 
3

1
250

y dy∫ =
32

0

9
50 50
y 

=


= .18. 

 

d. P(Y ≤ 8) = 
5 8

1 2 1
25 5 250 5

23( )
25

y dy y dy+ − =∫ ∫ = .92. 
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e. Use parts c and d: P(3 ≤ Y ≤ 8) = P(Y ≤ 8) – P(Y < 3) = .92 – .18 = .74. 
 
f. P(Y < 2 or Y > 6) = 

2 10
1 2 1
25 5 250 6

( ) .4y dy y dy= + − = =∫ ∫  . 

 
 
 
9.  

a. P(X ≤ 5) = 
5 4.15( 1) .15

1 0
.15 .15x ue dx e du− − −=∫ ∫  (after the substitution u = x – 1) 

= 
4.15 .6

0
1ue e− −− = − ≈ .451. P(X > 5) = 1 – P(X ≤ 5) = 1 – .451 = .549. 

 
b. P(2 ≤ X ≤ 5) = 

5 .15( 1)

2
.15 xe dx− −∫ = 

4.154

1

.15

1
.15 u ue du e− −= − ∫  = .312. 

 
 
10.  

a. The pdf is a decreasing function of x, beginning at x = θ. 
 
 
 
 
 
 
 
 
 
     θ 

 

b. 1
1( ; , ) ( ( 1)0 ·)

k
k k k k kk

k
kf x k dx dx k x dx x
x θθ θ

θ θ θθ θ θ− −∞ ∞ ∞ ∞−
+−∞

−= = = ⋅ − = − − =∫ ∫ ∫ . 

 

c. P(X ≤ b) = 1 1
b kkb

k k

kk dx
x x bθ

θ

θ θθ
+

  = − = −  
 

∫ . 

 

d. P(a ≤ X ≤ b) = 1

b k kkb

ka
a

k

kx
k dx
x a b
θ θθ θ
+

    = − = −   
   

∫ . 
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Section 4.2 
 
11.  

a. P(X ≤ 1) = F(1) = 
21
4

.25= . 

 

b. P(.5 ≤ X ≤ 1) = F(1) – F(.5) = 
2 21 .5
4 4
− = .1875. 

 

c. P(X > 1.5) = 1 – P(X ≤ 1.5) = 1 – F(1.5) = 
2

1 1.5
4

− =.4375. 

 

d. .5 = 
2

2( ) 2 2 1.414
4

F µµ µ µ= ⇒ = ⇒ = ≈


   . 

 

e. f(x) = F′(x) = 
2
x  for 0 ≤ x < 2, and = 0 otherwise. 

f. E(X) = 
232 2 2

0 0
0

1 8( ) 1.333
2 2 6 6
x xx f x dx x dx x dx

∞

−∞


⋅ = ⋅ = = = ≈


∫ ∫ ∫ . 

 

g. E(X2) = 
242 22 2 3

0 0
0

1( ) 2,
2 2 8
x xx f x dx x dx x dx

∞

−∞


= = = =


∫ ∫ ∫  so V(X) = E(X2) – [E(X)]2 = 

2

2 .28 8
6

2
6

2
3

 − = ≈ 
 

, and σX = .222 = .471. 

 
h. From g, E(X2) = 2. 

 
 
12.  

a. P(X < 0) = F(0) = .5. 
 
b. P(–1 ≤ X ≤ 1) = F(1) – F(–1) = .6875. 
 
c. P(X > .5) = 1 – P(X ≤ .5) = 1 – F(.5) = 1 – .6836 = .3164. 
 

d. f(x) = F′(x) = 
31 3 4

2 32 3
d xx
dx

  
+ −  

  
= ( )

2
23 30 4 .09375 4

32 3
x x

 
+ − = − 

 
. 

 
e. By definition, ( ) .5F µ = . F(0) = .5 from a above, which is as desired. 
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13.  

a. 4 3 3
41

1
1

1 1) 3
3

0 (
33

k kdx k x dx kk k
x

x
∞

− − −∞ ∞ = = = = − = ⇒ =
 
 − − ∫ ∫ .  

 

b. For x ≥ 1, F(x)= 3 3
3141

1( ) 1 13x x x
f y dy dy

xy
xy −−

−∞
= = = − + = −−∫ ∫ . For x < 1, F(x) = 0 since the 

distribution begins at 1. Put together, 
3

0
( ) 11 1

1
F x

x

x
x

 <

≤
= 
−

.   

 
c. P(X > 2) = 1 – F(2) = 1 – 7

8
1
8=  or .125; 

( ) ( )1 1
27 8(2 3) (3) (2) 1 1 .963 .875 .088P X F F< < = − = − − − = − = . 

 

d. The mean is 2
4 31 1 1

3 3 3 33( ) 0
2 2 2

E X x dx dx xx x

∞
∞ ∞

−   = = = − = + =   
   ∫ ∫  = 1.5. Next, 

2 2 1
4 2 11 1

3 3( ) 0 3 33E X x dx dx xx x
∞ ∞ ∞

−   = = = − = + =   
   ∫ ∫ , so V(X) = 3 – (1.5)2 = .75. Finally, the 

standard deviation of X is σ = .75 = .866.  
 
e. (1.5 .866 1.5 .866) (.634 2.366) (2.366) (.634)P X P X F F− < < + = < < = − = .9245 – 0 = .9245.  

 
 
14.  

a. If X is uniformly distributed on the interval from A to B, then 1( )
2

B

A

A BE X x dx
B A

+
= ⋅ =

−∫ , the 

midpoint of the interval.  Also, 
2 2

2( )
3

A AB BE X + +
= , from which V(X) = E(X2) – [E(X)]2 = … = 

2( )
12

B A− . 

With A = 7.5 and B = 20, E(X) = 13.75 and V(X) = 13.02. 
 

b. From Example 4.6, the complete cdf is F(x) = 

0 7.5

7.57.5 2

1

0
1

20
2.5

x x

x

x <
 −

≤ <

≤






. 

 
c. P(X ≤ 10) = F(10) = .200; P(10 ≤ X ≤ 15) = F(15) – F(10) = .4. 
 
d. σ = 13.02 = 3.61, so µ ± σ = (10.14, 17.36). Thus, P(µ – σ  ≤ X ≤ µ + σ) =  

P(10.14 ≤ X ≤ 17.36) = F(17.36) – F(10.14) = .5776. 
 Similarly, P(µ – 2σ ≤ X ≤ µ + 2σ) = P(6.53 ≤ X ≤ 20.97) = 1. 
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15.  

a. Since X is limited to the interval (0, 1), F(x) = 0 for x ≤ 0 and F(x) = 1 for x ≥ 1. 
For 0 < x < 1,  

8 8 9

0 0
( ) ( ) 90 (1 ) (90 90 )

x x x
F x f y dy y y dy y y dy

−∞
= = − = −∫ ∫ ∫ = 9 10 9 10

0
10 9 10 9

x
y y x x− = −  . 

The graphs of the pdf and cdf of X appear below. 
 

x

f(
x)

1.00.80.60.40.20.0

4

3

2

1

0

x

F(
x)

1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

 
 

b. F(.5) = 10(.5)9 – 9(.5)10 = .0107. 
 
c. P(.25 < X ≤ .5) = F(.5) – F(.25) = .0107 – [10(.25)9 – 9(.25)10] = .0107 – .0000 = .0107.  

Since X is continuous, P(.25 ≤ X ≤ .5) = P(.25 < X ≤ .5) = .0107. 
 

d. The 75th percentile is the value of x for which F(x) = .75: 10x9 – 9x10 = .75 ⇒ x = .9036 using software.  
 

e. E(X) = 
1

11 18 9 0 10 11

0 0
0

( ) 90 (1 ) (90 90 ) 9 990 90
11 11

x f x dx x x x dx x x dx xx
∞

−∞

⋅ = ⋅ − = − = =− −∫ ∫ ∫  
9 .8182.

11
==  

Similarly, E(X2) = 
12 2 8

0
( ) 90 (1 )x f x dx x x x dx

∞

−∞
⋅ = ⋅ −∫ ∫ = … = .6818, from which V(X) = .6818 – 

(.8182)2 = .0124 and σX = .11134. 
 

f. μ ± σ = (.7068, .9295). Thus, P(μ – σ ≤ X ≤ μ + σ) = F(.9295) – F(.7068) = .8465 – .1602 = .6863, and 
the probability X is more than 1 standard deviation from its mean value equals 1 – .6863 = 3137. 
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16.  

a. The graph below shows f(x; θ, 80) for θ = 4 (green), θ = 1 (red), and θ = .5 (gold).  For θ > 1, X has a 
right-skewed distribution on [0, 80]; for θ = 1, f is constant (i.e., X ~ Unif[0, 80]); and for θ < 1, X has a 
left-skewed distribution and f has an asymptote as x → 80. 

 

b. For 0 < x < τ, F(x) = 
1

0
1

x
dy y

θθ
τ τ

−
 − 
 ∫ . Make the substitution u = 1 y

τ
−  , from which dy = – τ du: 

F(x) = 
1 / 1

1 1

1

/

11

1 /
( 1 1)

x

x x

xdu du u u u
θ

τ θ θ θ

ττ

θ τ θ
τ τ

−

−

− −

−

 ⋅ − = = = − − 
 ∫ ∫ . Also, F(x) = 0 for x ≤ 0 and           

F(x) = 1 for x ≥ τ. 
 

c. Set .5 = F(η) and solve for η: .5 = 1/ 1/.5 1 .5 (1 1 5 )1 1 .
θ θ

θ θη η η η τ
τ τ τ

⇒ = − =   − − ⇒ − = ⇒   
  

−


. 

 

d. P(50 ≤ X ≤ 70) = F(70) – F(50) = 
4701 1

80
 − − 
 

– 
4501 1

80
  − −  

   
= 

4 43 1
8 8

  −  









 = .0195. 

 
17.  

a. To find the (100p)th percentile, set F(x) = p and solve for x:  
x A
B A
−
−

 = p ⇒ x = A + (B – A)p. 

 

b. 1( )
2

B

A

A BE X x dx
B A

+
= ⋅ =

−∫ , the midpoint of the interval.  Also,  

2 2
2( )

3
A AB BE X + +

= , from which V(X) = E(X2) – [E(X)]2 = … = 
2( )

12
B A− . Finally,  

σX = ( )
12

B AV X −
= .  

 

c. 
11 11( ) .

( 1)( )
1

1

nBn

A

nBn n

A

x
B A

B AE X x dx
B A n B An

+ + +
− +

−
= ⋅ =


=

− + −∫  
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18. 
2
1

)1(1
1)( =
−−

=xf  for –1 ≤ x ≤ 1 

a. P(Y = .5) = P(X ≥ .5) = ∫
1

5. 2
1 dx  = .25. 

 
b. P(Y = –.5) = .25 as well, due to symmetry.  

For –.5 < y < .5, F(y) = .25 + ∫−
y

dx
5. 2

1 = .25 + .5(y + .5) = .5 + .5y.  

Since Y ≤ .5, F(y) = 1 for all y ≥ .5.  That is, 
 









≤
<≤−+

−<
=

y
yy

y
yF

5.1
5.5.5.5.

5.0
)(  

y

F(
y)

1.00.50.0-0.5-1.0

1.0

0.8

0.6

0.4

0.2

0.0

 
 
 
19.  

a. P(X ≤ 1) = F(1) = .25[1 + ln(4)] = .597. 
 
b. P(1 ≤ X ≤ 3) = F(3) – F(1) = .966 – .597 = .369. 
 
c. For x < 0 or x > 4, the pdf is f(x) = 0 since X is restricted to (0, 4). For 0 < x < 4, take the first derivative 

of the cdf: 
4 1 ln(4) 11 ln ln( )

4 4 4 4
1 ln(4) 1 1 1 ln(4) 1( ) ( ) ln( ) ln( ) .3466 .25ln( )
4 4 4 4 4

(

4

) x x x x x
x

f x F x x x x x
x

F x   + = + − ⇒    

′= = + − − = −

=

− =
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20.  

a. For 0 ≤ y < 5, F(y) = 
2

0 25 50
y u ydu =∫ ; for 5 ≤ y ≤ 10,  

F(y) = 
5

0 0 5
( ) ( ) ( )

y y
f u du f u du f u du= +∫ ∫ ∫

2

5

25 2 2 1
50 5 25 50 5

y u ydu y = + − = − + − 


=
∫   

So, the complete cdf of Y is  
 

2

2

5
50

2 1 10

0 0

0
( )

5

1
50 5

10

y y

y

y

F y

y

y y

≤ <

+ −

<




= 
<

≥

− ≤


    

y

F(
y)

1086420

1.0

0.8

0.6

0.4

0.2

0.0

 
b. In general, set F(y) = p and solve for y.  

For 0 < p < .5, p = F(y) =  
2

) 50
50

( py y pη =⇒ = ; for .5 ≤ p < 1,  

p = 
2 2 1 10 5 2(1 )

50 5
( )py y y pη− + − ⇒ = = − − . 

 
c. E(Y) = 5 by straightforward integration, or by the symmetry of f(y) about y = 5.  

Similarly, by symmetry V(Y) =
10 5 5

0 0 0

2
2 2 2( ) (( 5) 2 ( 5) 2 ( 5)

50
)f y dy f y dyy y dy yy

− = − = −∫ ∫ ∫ = … = 50
12

 = 

4.1667.  For the waiting time X for a single bus, E(X) = 2.5 and V(X) = 25
12

; not coincidentally, the 

mean and variance of Y are exactly twice that of X. 
 
 

21. E(area) = E(πR2) = ( )112 2 2

9

3 501π ( ) π 1 (10 ) π
4 5

r f r dr r r dr
∞

−∞
== − − =∫ ∫  = 314.79 m2. 

 
22.  

a. For 1 ≤ x ≤ 2,  F(x) = 21
1

1 1 12 1 2 2 4,
x

x
dy y x

y y x
     − = + = + −     

    
∫  so the cdf is 

0 1

( ) 2 4 1

1 2

1 2x
x

x

F x x

x

<
  = + −  

>

≤ ≤
 


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b. Set F(x) = p and solve for x: 212 4 2 ( 4) 2 0x p x p x
x

 + − = ⇒ − + + = 
 

⇒  

2 2( 4) 4(2)(2)( 4) 4
2(2)

8
( )

4
p x

p pp pp
η

+ + + +
= =

+ − +
= . (The other root of the quadratic gives 

solutions outside the interval [1, 2].) To find the median µ , set p = .5: (.5)µ η= = … = 1.640. 
 

c. E(X) = 
222 2

21 1
1

1 12 1 2 2 ln( ) 1.614
2
xx dx x dx x

x x
    ⋅ − = − = − =    

     
∫ ∫ . Similarly,  

E(X2) = ( )
232 2

1
1

82 1 2
3 3
xx dx x

 
− = − = 

 
∫  ⇒ V(X) = .0626. 

 
d. The amount left is given by h(x) = max(1.5 – x, 0), so 

 E(h(X)) = 
2 1.5

21 1

1max(1.5 ,0) ( ) 2 (1.5 ) 1 .061x f x dx x dx
x

 − = − − = 
 ∫ ∫ . 

 
 
23. With X = temperature in °C, the temperature in °F equals 1.8X + 32, so the mean and standard deviation in 

°F are 1.8μX + 32 = 1.8(120) + 32 = 248°F and |1.8|σX = 1.8(2) = 3.6°F. Notice that the additive constant, 
32, affects the mean but does not affect the standard deviation. 
 

24.  

a. E(X) = 
1

1

1 .
1 1

k k k
k

k k
k k x kx dx k dx
x x k kθ θ

θ

θ θ θθ
∞− +∞ ∞

+


⋅ = = =− + −

∫ ∫  

 
b. If we attempt to substitute k = 1 into the previous answer, we get an undefined expression. More 

precisely, 
1

(im )l
k

E X
+→

= ∞. 

 

c. E(X2) = 
2

1

1
2

k
k

kk dx
x kθ

θθ
∞

− =
−∫ , so V(X) = 

( )( )2
222

1212 −−
=








−
−











− kk
k

k
k

k
k θθθ . 

 
d. Using the expression above, V(X) = ∞ since E(X2) = ∞ if k = 2. 
 
e. E(Xn) = ( 1)k n kk x dx

θ
θ

∞ − +∫ , which will be finite iff n – (k+1) < –1, i.e. if n < k. 

 
 
25.  

a. P(Y ≤ 1.8 µ + 32) = P(1.8X + 32 ≤ 1.8 µ  + 32) = P( X ≤ µ ) = .5 since µ  is the median of X. This 
shows that 1.8 µ +32 is the median of Y. 

 
b. The 90th percentile for Y equals 1.8η(.9) + 32, where η(.9) is the 90th percentile for X. To see this, P(Y 

≤ 1.8η(.9) + 32) = P(1.8X + 32 ≤ 1.8η(.9) + 32) = P(X ≤ η(.9)) = .9, since η(.9) is the 90th percentile of 
X. This shows that 1.8η(.9) + 32 is the 90th percentile of Y. 
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c. When Y = aX + b (i.e. a linear transformation of X) and the (100p)th percentile of the X distribution is 
η(p), then the corresponding (100p)th percentile of the Y distribution is a⋅η(p) + b. This can be 
demonstrated using the same technique as in a and b above. 

 
26.  

a. 1 = ∫
∞ −+

0

7)5.2/1( dxxk  = 
∞

−+
− 0

6)5.2/1(
6
5.2 xk  = … = 

4.2
k  ⇒ k = 2.4. 

 
b. The graph decreases at a pace comparable to x–7 as x → ∞. 

x

f(
x)

876543210

2.5

2.0

1.5

1.0

0.5

0.0

 

c. E(X) = ∫
∞ −+⋅

0

7)5.2/1(4.2 dxxx . Let u = 1 + x/2.5, so x = 2.5(u – 1) and dx = 2.5 du. The integral 

becomes 7

1

7

1

62.5( 1) 2.4 2.5 15 ( )u u du u duu
∞

− −∞ −− ⋅ ⋅ −=∫ ∫ = … = 0.5, or $500. Similarly, E(X2) = 

∫
∞ −+⋅

0

72 )5.2/1(4.2 dxxx  = ∫
∞ − ⋅⋅−

1

72 5.24.2))1(5.2( duuu = 0.625, so V(X) = 0.625 – (0.5)2 = 0.375 

and σX = 375.0  = 0.612, or $612. 
 
d. The maximum out-of-pocket expense, $2500, occurs when $500 + 20%(X – $500) equals $2500; this 

accounts for the $500 deductible and the 20% of costs above $500 not paid by the insurance plan. 
Solve: $2,500 = $500 + 20%(X – $500) ⇒ X = $10,500. At that point, the insurance plan has already 
paid $8,000, and the plan will pay all expenses thereafter. 

 
Recall that the units on X are thousands of dollars. If Y denotes the expenses paid by the company (also 
in $1000s), Y = 0 for X ≤ 0.5; Y = .8(X – 0.5) for 0.5 ≤ X ≤ 10.5; and Y = (X – 10.5) + 8 for X > 10.5. 
From this, 
 

E(Y) = ∫
∞ −+⋅

0

7)5.2/1(4.2 dxxy = ∫
5.0

0
0 dx  + ∫ −+⋅−

5.10

5.0

7)5.2/1(4.2)5.0(8. dxxx  + 

∫
∞ −+⋅−

5.10

7)5.2/1(4.2)5.10( dxxx  = 0 + .16024 + .00013 = .16037, or $160.37. 

 

27. Since X is uniform on [0, 360], E(X) = 
2
3600+ = 180° and σX = 

12
0360−  = 103.82°. Using the suggested 

linear representation of Y, E(Y) = (2π/360)μX – π = (2π/360)(180) – π = 0 radians, and σY = (2π/360)σX = 
1.814 radians. (In fact, Y is uniform on [–π, π].) 
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Section 4.3 
 
28.  

a. P(0 ≤ Z ≤ 2.17) = Φ(2.17) – Φ(0) = .4850. 
 
b. Φ(1) – Φ(0) = .3413. 
 
c. Φ(0) – Φ(–2.50) = .4938. 
 
d. Φ(2.50) – Φ(–2.50) = .9876. 
 
e. Φ(1.37) = .9147. 
 
f. P( –1.75 < Z) + [1 – P(Z < –1.75)] = 1 – Φ(–1.75) = .9599. 
 
g. Φ(2) – Φ(–1.50) = .9104. 
 
h. Φ(2.50) – Φ(1.37) = .0791. 
 
i. 1 – Φ(1.50)  = .0668. 
 
j. P(|Z| ≤ 2.50) = P(–2.50 ≤ Z ≤ 2.50) = Φ(2.50) – Φ(–2.50) = .9876. 
 

 
29.  

a. .9838 is found in the 2.1 row and the .04 column of the standard normal table so c = 2.14. 
 
b. P(0 ≤ Z ≤ c) = .291 ⇒ Φ(c) – Φ(0) = .2910 ⇒ Φ(c) – .5 = .2910 ⇒ Φ(c) = .7910 ⇒ from the standard 

normal table, c = .81.  
 
c. P(c ≤ Z) = .121 ⇒  1 – P(Z < c) = .121 ⇒ 1 – Φ(c) = .121 ⇒ Φ(c) = .879 ⇒ c = 1.17. 
 
d. P(–c ≤ Z ≤ c) = Φ(c) – Φ(–c) = Φ(c) – (1 – Φ(c)) = 2Φ(c) – 1 = .668 ⇒ Φ(c) = .834 ⇒  

c = 0.97. 
 

e. P(c ≤ |Z|) = 1 – P(|Z| < c) = 1 – [Φ(c) – Φ(–c)] = 1 – [2Φ(c) – 1] = 2 – 2Φ(c) = .016  ⇒ Φ(c) = .992 ⇒ 
c = 2.41. 

 
 
30.  

a. Φ(c) = .9100 ⇒ c ≈ 1.34, since .9099 is the entry in the 1.3 row, .04 column. 
 
b. Since the standard normal distribution is symmetric about z = 0, the 9th percentile =  

–[the 91st percentile] = –1.34. 
 
c. Φ(c) = .7500 ⇒ c ≈ .675, since .7486 and .7517 are in the .67 and .68 entries, respectively. 
 
d. Since the standard normal distribution is symmetric about z = 0, the 25th percentile =  

–[the 75th percentile] = –.675. 
 
e. Φ(c) = .06 ⇒ c ≈ –1.555, since .0594 and .0606 appear as the –1.56 and –1.55 entries, respectively. 
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31. By definition, zα satisfies α = P(Z ≥ zα) = 1 – P(Z < zα) = 1 – Φ(zα), or Φ(zα) = 1 – α. 

a. Φ(z.0055) = 1 – .0055 = .9945 ⇒ z.0055 = 2.54. 
 

b. Φ(z.09) = .91 ⇒ z.09 ≈ 1.34. 
 
c. Φ(z.663) = .337 ⇒ z.633 ≈ –.42. 

 
 
32.  

a. P(X ≤ 15) = 15 15.0
1.25

P Z − ≤ 
 

= P(Z ≤ 0) = Φ(0.00) = .5000. 

 

b. P(X ≤ 17.5) = 17.5 15.0
1.25

P Z − ≤ 
 

= P(Z ≤ 2) = Φ(2.00) = .9772. 

 

c. P(X ≥ 10) = 10 15.0
1.25

P Z − 
 
 

≥ = P(Z ≥ –4) = 1 – Φ(–4.00) = 1 – .0000 = 1. 

 

d. P(14 ≤ X ≤ 18) = 14 15.0 18 15.0
1.25 1.25

P Z− − ≤ ≤ 
 

 = P(–.8 ≤ Z ≤ 2.4) = Φ(2.40)  – Φ(–0.80) = .9918 – 

.2119 = .7799. 
 
e. P(|X – 15| ≤ 3) = P(–3 ≤ X – 15 ≤ 3) = P(12 ≤ X ≤ 18) = P(–2.4 ≤ Z ≤ 2.4) =  

Φ(2.40) – Φ(–2.40) = .9918 – .0082 = .9836. 
 
33.  

a. P(X  ≤ 50) = 50 46.8
1.75

P Z − ≤ 
 

= P(Z ≤ 1.83) = Φ(1.83) = .9664. 

 

b. P(X ≥ 48) = 48 46.8
1.75

P Z − 
 
 

≥ = P(Z ≥ 0.69) =  1 – Φ(0.69) = 1 – .7549 = .2451. 

 
c. The mean and standard deviation aren’t important here. The probability a normal random variable is 

within 1.5 standard deviations of its mean equals P(–1.5 ≤ Z ≤ 1.5) =  
Φ(1.5) – Φ(–1.5) = .9332 – .0668 = .8664. 

 
 
34. µ = .30, σ = .06 

a. P(X > .50) = P(Z > 3.33) = 1 – Φ(3.33) = 1 – .9996 = .0004. 
 
b. P(X ≤ .20) = Φ(–0.50) = .3085. 
 
c. We want the 95th percentile, c, of this normal distribution, so that 5% of the values are higher.  The 95th 

percentile of the standard normal distribution satisfies Φ(z) = .95, which from the normal table yields z 
= 1.645.   

 
So, c = .30 + (1.645)(.06) = .3987.  The largest 5% of all concentration values are above .3987 mg/cm3. 
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35. µ = 8.46 min, σ = 0.913 min 

a. P(X ≥ 10) = P(Z ≥ 1.69) = 1 – Φ(1.69) = 1 – .9545 = .0455. 
Since X is continuous, P(X > 10) = P(X ≥ 10) = .0455. 

 
b. P(X > 15) = P(Z > 7.16) ≈ 0. 
 
c. P(8 ≤ X ≤ 10) = P(–0.50 ≤ Z ≤ 1.69) = Φ(1.69) – Φ(–0.50) = .9545 – .3085 = .6460. 
 
d. P(8.46 – c ≤ X ≤ 8.46 + c) = .98, so 8.46 – c and 8.46 + c are at the 1st and the 99th percentile of the 

given distribution, respectively.  The 99th percentile of the standard normal distribution satisfies Φ(z) = 
.99, which corresponds to z = 2.33. 
So, 8.46 + c = µ + 2.33σ = 8.46 + 2.33(0.913) ⇒ c = 2.33(0.913) = 2.13. 
 

e. From a, P(X > 10) = .0455 and P(X ≤ 10) = .9545.  For four independent selections,        
P(at least one haul time exceeds 10) = 1 – P(none of the four exceeds 10) =  
1 – P(first doesn’t ∩ … fourth doesn’t) = 1 – (.9545)(.9545)(.9545)(.9545)  by independence =            
1 – (.9545)4 = .1700.  

 
 
36.  

a. P(X < 1500) = P(Z < 3) = Φ(3) = .9987; P(X ≥ 1000) = P(Z ≥ –.33) = 1 – Φ(–.33) = 1 –.3707 = .6293. 
 

b. P(1000 < X < 1500) = P(–.33 < Z < 3) = Φ(3) – Φ(–.33) = .9987 – .3707 = .6280 
 
c. From the table, Φ(z) = .02 ⇒ z = –2.05 ⇒ x = 1050 – 2.05(150) = 742.5 μm. The smallest 2% of 

droplets are those smaller than 742.5 μm in size. 
 
d. Let Y = the number of droplets, out of 5, that exceed 1500 µm. Then Y is binomial, with n = 5 and p = 

.0013 from a. So, P(Y = 2) = 2 35
(.0013) (.9987)

2
 
 
 

 ≈ 1.68 × 10–5. 

 
37.  

a. P(X = 105) = 0, since the normal distribution is continuous;  
P(X < 105) = P(Z < 0.2) = P(Z ≤ 0.2) = Φ(0.2) = .5793; 
P(X ≤ 105) = .5793 as well, since X is continuous. 

 
b. No, the answer does not depend on μ or σ. For any normal rv, P(|X – μ| > σ) = P(|Z| > 1) =  

P(Z < –1 or Z > 1) = 2P(Z < –1) by symmetry = 2Φ(–1) = 2(.1587) = .3174. 
 
c. From the table, Φ(z) = .1% = .001 ⇒ z = –3.09 ⇒ x = 104 – 3.09(5) = 88.55 mmol/L. The smallest 

.1% of chloride concentration values are those less than 88.55 mmol/L 
 
38. Let X denote the diameter of a randomly selected cork made by the first machine, and let Y be defined 

analogously for the second machine. 
P(2.9 ≤ X ≤ 3.1) = P(–1.00 ≤ Z ≤ 1.00) = .6826, while 
P(2.9 ≤ Y ≤ 3.1) = P(–7.00 ≤ Z ≤ 3.00) = .9987. So, the second machine wins handily. 
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39. µ = 30 mm, σ = 7.8 mm 

a. P(X ≤ 20) = P(Z ≤ –1.28) = .1003. Since X is continuous, P(X < 20) = .1003 as well. 
 
b. Set Φ(z) = .75 to find z ≈ 0.67. That is, 0.67 is roughly the 75th percentile of a standard normal 

distribution. Thus, the 75th percentile of X’s distribution is µ + 0.67σ = 30 + 0.67(7.8) = 35.226 mm. 
 
c. Similarly, Φ(z) = .15 ⇒ z ≈ –1.04 ⇒ η(.15) = 30 – 1.04(7.8) = 21.888 mm. 

 
d. The values in question are the 10th and 90th percentiles of the distribution (in order to have 80% in the 

middle). Mimicking b and c, Φ(z) = .1 ⇒ z ≈ –1.28 & Φ(z) = .9 ⇒ z ≈ +1.28, so the 10th and 90th 
percentiles are 30 ± 1.28(7.8) = 20.016 mm and 39.984 mm. 

 
40.  

a. P(X < 40) = 40 43
4.5

P Z − ≤ 
 

= P(Z < –0.667) = .2514. 

P(X > 60) = 60 43
4.5

P Z − > 
 

= P(Z > 3.778) ≈ 0. 

 
b. We desire the 25th percentile. Since the 25th percentile of a standard normal distribution is roughly        

z = –0.67, the answer is 43 + (–0.67)(4.5) = 39.985 ksi. 
 

41. For a single drop, P(damage) = P(X < 100) = 100 200
30

P Z − < 
 

= P(Z < –3.33) = .0004. So, the 

probability of no damage on any single drop is 1 – .0004 = .9996, and  
P(at least one among five is damaged) = 1 – P(none damaged) = 1 – (.9996)5 = 1 – .998 = .002. 

 
42. The probability X is within .1 of its mean is given by P(µ – .1 ≤ X ≤ µ + .1) = 

.1) ( .1( .1 1 .12 1) .P Zµ µ µ µ
σ σσ σ σ

− − − < < = 


+      Φ −Φ − = Φ −     
     

. If we require this to equal 95%, we 

find .1 .1 .12 1 .95 .975 1.96
σ σ σ
   Φ − = ⇒Φ = ⇒ =   
   

from the standard normal table. Thus, 0510.
96.1
1.

==σ . 

Alternatively, use the empirical rule: 95% of all values lie within 2 standard deviations of the mean, so we 
want 2σ = .1, or σ = .05. (This is not quite as precise as the first answer.) 

 
43.  

a. Let µ and σ denote the unknown mean and standard deviation. The given information provides 

.05 = P(X < 39.12) = 39.12 39.12 1.645 39.12 1.645µ µ µ σ
σ σ
− − Φ ⇒ ≈ − ⇒ − = − 

 
 and 

.10 = P(X > 73.24) = 1 – 173.24 73.24 (.9) 1.28 73.24 1.28µ µ µ σ
σ σ

−− − Φ ⇒ = Φ ≈ ⇒ − = 
 

.  

Subtract the top equation from the bottom one to get 34.12 = 2.925σ, or σ ≈ 11.665 mph. Then, 
substitute back into either equation to get µ ≈ 58.309 mph. 
  

b. P(50 ≤ X ≤ 65) = Φ(.57) – Φ(–.72) = .7157 – .2358 = .4799. 
 

c. P(X > 70) = 1 – Φ(1.00) = 1 – .8413 = .1587. 
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44.  
a. P(µ – 1.5σ  ≤ X ≤ µ + 1.5σ) = P(–1.5 ≤ Z ≤ 1.5) = Φ(1.50) – Φ(–1.50) = .8664. 
 
b. P(X < µ – 2.5σ or X > µ + 2.5σ) = 1 – P(µ – 2.5σ ≤ X ≤ µ + 2.5σ) 

= 1 – P(–2.5 ≤ Z ≤ 2.5) = 1 – .9876 = .0124. 
 

c. P(µ – 2σ  ≤ X ≤ µ – σ or µ + σ  ≤ X ≤ µ + 2σ) = P(within 2 sd’s) – P(within 1 sd) =  
P(µ – 2σ ≤ X ≤ µ + 2σ) – P(µ – σ ≤ X ≤ µ + σ) = .9544 – .6826 = .2718. 

 
 
45. With µ = .500 inches, the acceptable range for the diameter is between .496 and .504 inches, so 

unacceptable bearings will have diameters smaller than .496 or larger than .504.   
The new distribution has µ = .499 and σ =.002.  

P(X < .496 or X >.504) = .496 .499 .504 .499
.002 .002

P Z P Z− −   < + >   
   

= P(Z < –1.5) + P(Z > 2.5) =   

Φ(–1.5) + [1 – Φ(2.5)] = .073. 7.3% of the bearings will be unacceptable. 
 
46.  

a. 70 75 70 (1.67) (67 70(67 75) ( 1 1. 17
3

)
3 3

6 )P X XP P Z− < < = < = − < < = 


Φ


− −
< −Φ − = .9525 – 

.1587 = .7938. 
 
b. By the Empirical Rule, c should equal 2 standard deviations. Since σ = 3, c = 2(3) = 6.  

We can be a little more precise, as in Exercise 42, and use c = 1.96(3) = 5.88.  
 

c. Let Y = the number of acceptable specimens out of 10, so Y ~ Bin(10, p), where p = .7938 from part a. 
Then E(Y) = np = 10(.7938) = 7.938 specimens. 

 
d. Now let Y = the number of specimens out of 10 that have a hardness of less than 73.84, so  

Y ~ Bin(10, p), where 
73.84 70( 73.84) ( 1.28)

3
(1.28)p P X P Z P Z− = < = < = < Φ= 

 
= .8997. Then 

P(Y ≤ 8) = 10
8

0
(.8997)

10
(.1003)y y

y y=

− 
 
 

∑ = .2651. 

 
You can also compute 1 – P(Y = 9, 10) and use the binomial formula, or round slightly to p = .9 and 
use the binomial table: P(Y ≤ 8) = B(8; 10, .9) = .265. 

 
 
47. The stated condition implies that 99% of the area under the normal curve with µ = 12 and σ = 3.5 is to the 

left of c – 1, so c – 1 is the 99th percentile of the distribution.  Since the 99th percentile of the standard 
normal distribution is z = 2.33, c – 1 = µ + 2.33σ = 20.155, and c = 21.155. 

 
48.  

a. By symmetry, P(–1.72 ≤ Z ≤ –.55) = P(.55 ≤ Z ≤ 1.72) = Φ(1.72) – Φ(.55).  
 
b. P(–1.72 ≤ Z ≤ .55) = Φ(.55) – Φ(–1.72) = Φ(.55) – [1 – Φ(1.72)]. 

 
No, thanks to the symmetry of the z curve about 0. 
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49.  

a. ( ) ( )4000 34324000 1.18
482

P X P Z P Z− > = > = > 
 

1190.8810.1)18.1(1 =−=Φ−= ;

( ) 3000 3432 4000 34323000 4000
482 482

P X P Z− − < < = < < 
 

= Φ(1.18) – Φ(–.90) = .8810 – .1841 = .6969.  

 

b. ( ) 2000 3432 5000 34322000 or 5000
482 482

P X X P Z P Z− −   < > = < + >   
   

 

( ) ( )[ ] 0021.0006.0015.25.3197.2 =+=Φ−+−Φ= . 
 

c. We will use the conversion 1 lb = 454 g, then 7 lbs = 3178 grams, and we wish to find 

( ) 3178 34323178 1 ( .53) .7019
482

P X P Z − > = > = −Φ − = 
 

. 

 
d. We need the top .0005 and the bottom .0005 of the distribution.  Using the z table, both .9995 and 

.0005 have multiple z values, so we will use a middle value, ±3.295. Then 3432 ± 3.295(482) = 1844 
and 5020. The most extreme .1% of all birth weights are less than 1844 g and more than 5020 g. 

 
e. Converting to pounds yields a mean of 7.5595 lbs and a standard deviation of 1.0608 lbs.  

Then ( ) 





 −

>=>
0608.1

5595.777 ZPXP 7019.)53.(1 =−Φ−= .  This yields the same answer as in part c. 

 
 
50. We use a normal approximation to the binomial distribution:  Let X denote the number of people in the 

sample of 1000 who can taste the difference, so X ∼ Bin(1000, .03). Because μ = np = 1000(.03) = 30 and   
σ = (1 )np p−  = 5.394, X is approximately N(30, 5.394).  

a. Using a continuity correction, ( ) ( ) 39.5 3040 1 39 1
5.394

P X P X P Z − ≥ = − ≤ = − ≤ 
 

 =         

1 – P(Z ≤ 1.76) = 1 – Φ(1.76) = 1 – .9608 = .0392.  

b. 5% of 1000 is 50, and  ( ) 50.5 3050 (3.80) 1.
5.394

P X P Z − ≤ = ≤ = Φ ≈ 
 

 

 
 
51. P(|X – µ| ≥ σ) = 1 – P(|X – µ| < σ) = 1 – P(µ – σ < X < µ + σ) = 1 – P(–1 ≤ Z ≤ 1) = .3174. 

Similarly, P(|X – µ| ≥ 2σ) = 1 – P(–2 ≤ Z ≤ 2) = .0456 and P(|X – µ| ≥ 3σ) = .0026. 
These are considerably less than the bounds 1, .25, and .11 given by Chebyshev. 

 
 
52.  

a. P(20 ≤ X ≤ 30) = P(20 – .5 ≤ X ≤ 30 + .5) = P(19.5 ≤ X ≤ 30.5) = P(–1.1 ≤ Z ≤ 1.1) = .7286. 
 
b. P(X ≤ 30) = P(X ≤ 30.5) = P(Z ≤ 1.1) = .8643, while 

P(X < 30) = P(X ≤ 29.5) = P(Z < .9) = .8159. 
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53. p = .5 ⇒ μ = 12.5 & σ2 = 6.25; p = .6 ⇒ μ = 15 & σ2 = 6; p = .8 ⇒ μ = 20 and σ2 = 4. These mean and 

standard deviation values are used for the normal calculations below. 
 

a. For the binomial calculation, P(15 ≤ X ≤ 20) = B(20; 25, p) – B(14; 25, p). 
p P(15 ≤ X ≤ 20) P(14.5 ≤ Normal ≤ 20.5) 
.5 = .212 = P(.80 ≤ Z ≤ 3.20)  = .2112  
.6 = .577 = P(–.20 ≤ Z ≤ 2.24)  = .5668 
.8 = .573 = P(–2.75 ≤ Z ≤ .25)  = .5957 

 
b. For the binomial calculation, P(X ≤ 15) = B(15; 25, p). 

p P(X ≤ 15) P(Normal ≤ 15.5) 
.5 = .885 = P(Z ≤ 1.20)  = .8849 
.6 = .575 = P(Z ≤ .20)  = .5793 
.8 = .017 = P(Z ≤ –2.25)  = .0122 

 
c. For the binomial calculation, P(X ≥ 20) = 1 – B(19; 25, p). 

p P(X ≥ 20) P(Normal ≥ 19.5) 
.5 = .002 = P(Z ≥ 2.80)  = .0026 
.6 = .029 = P(Z ≥ 1.84)  = .0329 
.8 = .617 = P(Z ≥ –0.25)  = .5987 

 
 
54. Use the normal approximation to the binomial, with a continuity correction. With p = .10 and n = 200,        

μ = np = 20, and σ2 = npq = 18. So, Bin(200, .10) ≈ N(20, 18 ). 

a. P(X ≤ 30) = (30 .5) 20
18

+ − Φ 
 

= Φ(2.47) = .9932. 

 

b. P(X < 30) =P(X ≤ 29) = (29 .5) 20
18

+ − Φ 
 

= Φ(2.24) = .9875. 

 

c. P(15 ≤ X ≤ 25) = P(X ≤ 25) – P(X ≤ 14) = (25 .5) 20 (14 .5) 20
18 18

+ − + −   Φ −Φ   
   

 

= Φ(1.30) – Φ(–1.30) = .9032 – .0968 = .8064. 
 
 
55. Use the normal approximation to the binomial, with a continuity correction. With p = .75 and n = 500,        

μ = np = 375, and σ = 9.68. So, Bin(500, .75) ≈ N(375, 9.68). 
a. P(360 ≤ X ≤ 400) = P(359.5 ≤ X ≤ 400.5) = P(–1.60 ≤ Z ≤ 2.58) = Φ(2.58) – Φ(–1.60) = .9409. 
 
b. P(X < 400) = P(X ≤ 399.5) = P(Z ≤ 2.53) = Φ(2.53) = .9943. 

 
56. Let z1–p denote the (100p)th percentile of a standard normal distribution. The claim is the (100p)th 

percentile of a N(μ, σ) distribution is μ + z1–pσ. To verify this,    

P(X ≤ μ + z1–pσ) = ( )1 1p p
XP z P Z zµ
σ − −

− ≤ = ≤ 
 

= p by definition of z1–p. That establishes   μ + z1–pσ as 

the (100p)th percentile. 
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57.  

a. For any a > 0, ( ) ( ) ( )Y X
y b y by P Y y P aX b y P X

a
F F

a
− − = ≤ = + ≤ = ≤ =  

 


 
 

. This, in turn, implies 

1( ) ( )Y Y X X
d d y b y by F y F f
dy dy a

f
a a

   =   
  

−
= =


− .  

Now let X have a normal distribution. Applying this rule,  
2 2

2 22

1 1 (( ) / ) 1 ( )( ) exp exp
2 22 2Y

y b a y b ay
a

f
aa

µ µ
σ σπσ π σ

   − − − −
= − = −   

   
. This is the pdf of a normal 

distribution. In particular, from the exponent we can read that the mean of Y is E(Y) = aμ + b and the 
variance of Y is V(Y) = a2σ2.  These match the usual rescaling formulas for mean and variance. (The 
same result holds when a < 0.) 
 

b. Temperature in °F would also be normal, with a mean of 1.8(115) + 32 = 239°F and a variance of 
1.8222 = 12.96 (i.e., a standard deviation of 3.6°F). 

 
 
58.  

a. P(Z ≥ 1) ≈ 83 351 562.5 exp .1587
703 165
+ + ⋅ = + 

, which matches 1 – Φ(1). 

 

b. P(Z < –3) = P(Z > 3) ≈ 2362.5 exp .0013
399.3333
− ⋅ = 

 
, which matches Φ(–3). 

 

c. P(Z > 4) ≈ 3294.5 exp .0000317
340.75
− ⋅ = 

 
, so P(–4 < Z < 4) = 1 – 2P(Z ≥ 4) ≈  

1 – 2(.0000317) = .999937. 
 

d. P(Z > 5) ≈ 4392.5 exp .00000029
305.6
− ⋅ = 

 
. 
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Section 4.4 
 
59.  

a. E(X) = 11
=

λ
. 

 

b. 11
==

λ
σ . 

 
c. P(X ≤ 4) = 982.11 4)4)(1( =−=− −− ee . 
 
d. P(2 ≤ X ≤ 5) = (1)(5) (1)(2) 2 5(1 ) (1 ) .129e e e e− − − −− − − = − = . 

 
 
60.  

a. P(X ≤ 100) = (100)(.01386) 1.3861 1 .7499.e e− −− = − =  
P(X ≤ 200) = (200)(.01386) 2.7721 1 .9375.e e− −− = − =  
P(100 ≤ X ≤ 200) = P(X ≤ 200) – P(X ≤ 100) = .9375 – .7499 = .1876. 
 

b. First, since X is exponential, µ = 1 72.15
.0138

1
6λ
== , σ = 72.15. Then 

P(X > µ + 2σ) = P(X > 72.15 + 2(72.15)) = P(X > 216.45) = 1 – (1 – e–.01386(216.45)) = e–3 = .0498.  
 

c. Remember the median is the solution to F(x) = .5. Use the formula for the exponential cdf and solve 

for x: F(x) = 1 – e–.01386x = .5 ⇒ e–.01386x = .5 ⇒ –.01386x = ln(.5) ⇒ x = ln(.5)
.01386

− = 50.01 m. 

 
 

61. Note that a mean value of 2.725 for the exponential distribution implies λ = 1
2.725

. Let X denote the 

duration of a rainfall event. 
a. P(X ≥ 2) = 1 – P(X < 2) = 1 – P(X ≤ 2) = 1 – F(2; λ) = 1 – [1 – e–(1/2.725)(2)] = e–2/2.725 = .4800;             

P(X ≤ 3) = F(3; λ) = 1 – e–(1/2.725)(3) = .6674; P(2 ≤ X ≤ 3) = .6674 – .4800 = .1874. 
 

b. For this exponential distribution, σ = μ = 2.725, so P(X > μ + 2σ) =  
P(X > 2.725 + 2(2.725)) = P(X > 8.175) = 1 – F(8.175; λ) = e–(1/2.725)(8.175) = e–3 = .0498. 
On the other hand, P(X < μ – σ) = P(X < 2.725 – 2.725) = P(X < 0) = 0, since an exponential random 
variable is non-negative. 
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62.  

a. Clearly E(X) = 0 by symmetry, so V(X) = E(X2) = ∫
∞

∞−

− dxex x||2

2
λλ  = ∫

∞ −

0

2 dxex xλλ  = 
23

2)3(
λλ

λ =
Γ
⋅ . 

Solving 
2

2
λ

= V(X) = (40.9)2 yields λ = 0.034577. 

 

b. P(|X – 0| ≤ 40.9) = ∫−
−9.40

9.40

||

2
dxe xλλ = ∫ −9.40

0
dxe xλλ  = 1 – e–40.9 λ = .75688. 

 
63.  

a. If a customer’s calls are typically short, the first calling plan makes more sense. If a customer’s calls 
are somewhat longer, then the second plan makes more sense, viz. 99¢ is less than 20min(10¢/min) = 
$2 for the first 20 minutes under the first (flat-rate) plan. 

 
b. h1(X) = 10X, while h2(X) = 99 for X ≤ 20 and 99 + 10(X – 20) for X > 20. With μ = 1/λ for the 

exponential distribution, it’s obvious that E[h1(X)] = 10E[X] = 10μ. On the other hand,  

E[h2(X)] = 99 + ∫
∞ −−
20

)20(10 dxex xλλ = 99 + λ

λ
2010 −e  = 99 + 10μe–20/μ. 

When μ = 10, E[h1(X)] = 100¢ = $1.00 while E[h2(X)] = 99 + 100e–2 ≈ $1.13. 
When μ = 15, E[h1(X)] = 150¢ = $1.50 while E[h2(X)] = 99 + 150e–4/3 ≈ $1.39. 
As predicted, the first plan is better when expected call length is lower, and the second plan is better 
when expected call length is somewhat higher. 

 
64.  

a. Γ(6) = 5! = 120. 
 

b. 5 3 1 3 1 1 3 π 1.329
2 2 2 2 2 2 4

       Γ = Γ = ⋅ ⋅Γ = ≈       
       

. 

 
c. F(4; 5) = .371 from row 4, column 5 of Table A.4. 

F(5; 4) = .735 from row 5, column 4 of Table A.4. 
 
d. P(X ≤ 5) = F(5; 7) = .238. 
 
e. P(3 < X < 8) = P(X < 8) – P(X ≤ 3) = F(8; 7) – F(3; 7) = .687 – .034 = .653. 

 
 
65.  

a. From the mean and sd equations for the gamma distribution, αβ = 37.5 and αβ2 = (21.6)2 = 466.56. 
Take the quotient to get β = 466.56/37.5 = 12.4416. Then, α = 37.5/β = 37.5/12.4416 = 3.01408…. 

 
b. P(X > 50) = 1 – P(X ≤ 50) = 1 – F(50/12.4416; 3.014) = 1 – F(4.0187; 3.014). If we approximate this 

by 1 – F(4; 3), Table A.4 gives 1 – .762 = .238. Software gives the more precise answer of .237. 
 
c. P(50 ≤ X ≤ 75) = F(75/12.4416; 3.014) – F(50/12.4416; 3.014) = F(6.026; 3.014) – F(4.0187; 3.014) ≈ 

F(6; 3) – F(4; 3) = .938 – .762 = .176. 
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66.  
a. If X has a gamma distribution with parameters α, β, γ, then Y = X – γ has a gamma distribution with 

parameters α and β (i.e., threshold 0). So, write X = Y + γ, from which E(X) = E(Y) + γ = αβ + γ and 
SD(X) = SD(Y) = 2αβ . For the given values, E(X) = 12(7) + 40 = 124 (108 m3) and SD(X) = 

212(7) = 24.25 (108 m3). 
 
b. Use the same threshold-shift idea as in part a: P(100 ≤ X ≤ 150) = P(60 ≤ X – 40 ≤ 110) =               

P(60 ≤ Y ≤ 110) = 110 60;12 ;12
7 7

F F   −   
   

. To evaluate these functions or the equivalent integrals 

requires software; the answer is .8582 – .1575 = .7007. 
 

c. P(X > µ + σ) = P(X > 148.25) = P(X – 40 > 108.25) = P(Y > 108.25) = 1 – 108.25 ;12
7

F  
 
 

. From 

software, the answer is .1559. 
 

d. Set .95 = P(X ≤ x) = P(Y ≤ x – 40) = 40 ;12
7

xF − 
 
 

. From software, the 95th percentile of the standard 

gamma distribution with α = 12 is 18.21, so 40
7

x −  = 18.21, or x = 167.47 (108 m3). 

 

67. Notice that µ = 24 and σ2 = 144  ⇒ αβ = 24 and αβ2 = 144 ⇒ β = 144
24

= 6 and α = 24
β

= 4. 

a. P(12 ≤ X ≤ 24) = F(4; 4) – F(2; 4) = .424. 
 
b. P(X ≤ 24) = F(4; 4) = .567, so while the mean is 24, the median is less than 24, since   P(X ≤ µ~ ) = .5. 

This is a result of the positive skew of the gamma distribution. 
 

c. We want a value x for which ,α ,4
β 6
x xF F   =   

  
= .99. In Table A.4, we see F(10; 4) = .990.  So x/6 = 

10, and the 99th percentile is 6(10) = 60. 
 
d. We want a value t for which P(X > t) = .005, i.e. P(X ≤ t) = .005. The left-hand side is the cdf of X, so 

we really want ,4
6

F t 
 
 

=.995.  In Table A.4, F(11; 4)=.995, so t/6 = 11 and t = 6(11) = 66. At 66 

weeks, only .5% of all transistors would still be operating. 
 
68.  

a. E(X) = αβ = ;1
λλ
nn =  for λ = .5 and n = 10, E(X) = 20. 

 
b. P(X ≤ 30) = F(30/2; 10) = F(15; 10) = .930. 
 
c. F(x; λ, n) = P(X ≤ t) = P(the nth event occurs in [0, t]) = P(at least n events occur in [0, t])  

= P(Y ≥ n), where Y = the number of events in [0, t] ∼ Poisson with parameter λt.   

Thus F(x; λ, n) = 1 – P(Y < n) = 1 – P(Y ≤ n – 1) ( ) .
!

1
1

0
∑
−

=

−

−=
n

k

kt

k
te λλ
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69.  

a. {X ≥ t} = {the lifetime of the system is at least t}. Since the components are connected in series, this 
equals {all 5 lifetimes are at least t} = A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5.  

 
b. Since the events Ai are assumed to be independent, P(X ≥ t) = P(A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5) = P(A1) ⋅ 

P(A2) ⋅ P(A3) ⋅ P(A4) ⋅ P(A5). Using the exponential cdf, for any i we have   
P(Ai) = P(component lifetime is ≥ t) = 1 – F(t) = 1 – [1 – e–.01t] = e–.01t. 
Therefore, P(X ≥ t) = (e–.01t) ··· (e–.01t) = e–.05t , and FX(t) = P(X ≤ t) = 1 – e–.05t.  
Taking the derivative, the pdf of X is fX(t) = .05e–.05t  for t ≥ 0.  Thus X also has an exponential 
distribution, but with parameter λ = .05. 

 
c. By the same reasoning, P(X ≤ t) = 1 – n te λ− , so X has an exponential distribution with parameter nλ. 

 
 
70. To find the (100p)th percentile, set F(x) = p and solve for x: p = F(x) = 1 – e–λx ⇒ e

–λx = 1 – p ⇒  

– λx = ln(1 – p) ⇒ x = ln(1 )p
λ

−
− .   

To find the median, set p = .5 to get ln(1 . ) .6935
λ

µ
λ

−
−

== . 

 
 
71.  

a. {X2 ≤ y} = { }y X y− ≤ ≤ . 
 

b. FY(y) = P(Y ≤ y) = P(X2 ≤ y) = )( y yP X≤ ≤−  = 
2 /21

2
y z

y
e dz

π
−

−∫ . To find the pdf of Y, use the 

identity (Leibniz’s rule):  
2 2( /2 () /2

/2 /2 /2

)

1/2

1 1
2π 2π
1 1 1 1
2π 2π

( )
( ) · ·

1· ·
π2 2 2

y y

y

Y

y y

d y d y
y

dy dy

y y

f e e

e e y e

− −

− − −−

− −
−

= =
−

−

=
   

 
This is valid for y > 0. We recognize this as the chi-squared pdf with ν = 1. 
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Section 4.5 
 
72.  

a. E(X) = 3 131 1 13 1 3 3 2.66
2 2 2

π
2 2

   Γ + = ⋅ ⋅Γ = ⋅   
   

 Γ = = 
 

,  

V(X) = 22 3(2)
2

2 19 1 1 9 1.926
2 2

        Γ + −Γ + = =                
Γ −Γ . 

 
b. P(X ≤  6) = 

2(6/ ) (6/3) 41 1 1 .982e e e
αβ− − −− = − = − = . 

 
c. P(1.5 ≤ X ≤ 6) = 

2 2(6/3) (1.5/3) .25 4(1 ) (1 ) .760.e e e e− − − −− − − = − =  
 
 
73.  

a. P(X ≤ 250) = F(250; 2.5, 200) = 
2.5(250/200) 1.751 1 .8257.e e− −− = − =  

P(X < 250) = P(X ≤ 250) = .8257. 
P(X > 300) = 1 – F(300; 2.5, 200) = 

2.5(1.5) .0636.e− =  
 

b. P(100 ≤ X ≤ 250) = F(250; 2.5, 200) – F(100; 2.5, 200) = .8257 – .162 = .6637. 
 
c. The question is asking for the median, µ . Solve F( µ ) = .5: .5 = 1 –  

2.5( /200)e µ−   ⇒  
2.5( /200)e µ−  = .5 ⇒ 2.5( / 200) ln(.5)µ = − ⇒ µ~  = 200(–ln(.5))1/2.5 = 172.727 hours. 

 
 
74. Let Y = X – γ = X – .5, so Y has a Weibull distribution with α = 2.2 and β = 1.1. 

a. P(1 < X < 2) = P(.5 < Y < 1.5) = [1 – exp(–(1.5/1.1)2.2)] – [1 – exp(–(.5/1.1)2.2)] = .8617 – .1618 = .7. 
 
b. P(X > 1.5) = P(Y > 1) = 1 – P(Y ≤ 1) = 1 – [1 – exp(–(1/1.1)2.2)] = exp(–(1/1.1)2.2) = .4445. 

 
c. First, the 90th percentile of Y’s distribution is determined by .9 = F(y) = 1 – exp(–(y/1.1)2.2) ⇒       

exp(–(y/1.1)2.2) = .1 ⇒ y ≈ 1.607. Then, since Y = X – .5 (aka X = Y + .5), the 90th percentile of X’s 
distribution is 1.607 + .5 = 2.107 days. 

 

d. The mean and variance of Y are µ = 11
2.

1
2

.1  Γ + 
 

 ≈ 0.974 and σ2 = 
2

2 2 11 1
2.2 2.2

1.1     Γ + − Γ +   
  
 
 

     
 

≈ 0.2185. Since X = Y + .5, E(X) = E(Y) + .5 = 0.974 + .5 = 1.474 days, and σX = σY = 0.2185  ≈ 
0.467 days. 

 
 

75. Using the substitution y = x x
α α

αβ β
 

= 
 

. Then dy = 
α

α

β
α 1−x dx , and ( )∫

∞ −−⋅=
0

1 dxexx
x α
βα

αβ
αµ  = 

1

0

/) ·( ye dy yα αβ
∞ −∫ = 






 +Γ⋅=∫

∞ −

α
ββ α

11
0

1
dyey y  by definition of the gamma function. 

 



Chapter 4:  Continuous Random Variables and Probability Distributions 

 152 

 
76.  

a. 2 21.9 ./2 /2 2.3059( ) 10.024E X e e eσµ+ += = = = . 

( ) ( )2 22(1.9) .9 .9( ) 1V X e e+= ⋅ − = 125.394 ⇒ σX = 11.198. 

 

b. P(X ≤ 10) = ln(10) 1.9
.9
− Φ 

 
 = Φ(0.447) ≈ .6736. 

P(5 ≤ X ≤ 10) = ln(10) 1.9
.9
− Φ 

 
 – ln(5) 1.9

.9
− Φ 

 
 = .6736 – Φ(–0.32) = .6736 – .3745 = .2991. 

 
77.  

a. 2 /2 4.82( ) 123.97.E X e eσµ+= = =   

( ) ( )2 22(4.5) .8 .8( ) 1 13,776.53V X e e+= ⋅ − = ⇒ 117.373.σ =  

 

b. ( )ln(100) 4.5( 100) 0.13 .5517.
.8

P X − ≤ = Φ = Φ = 
 

  

c. ( )ln(200) 4.5( 200) 1 ( 200) 1 1 1.00 1 .8413 .1587.
.8

P X P X − ≥ = − < = − = −Φ = − = 
 

Φ Since X is continuous, 

P(X > 200) = .1587 as well. 
 
78.  

a. P(X ≤ 0.5) = F(0.5) = 1 – exp[– (0.5/β)α] = .3099. 
 

b. Using a computer, 11
1.817

 Γ + 
 

= Γ(1.55) = 0.889 and  





 +Γ

817.1
21 = Γ(2.10) = 1.047. From these 

we find μ = (.863)(0.889) = 0.785 and σ2 = (.863)2[1.047 – 0.8892] = .1911, or σ = .437.   
Hence, P(X > μ + σ) = P(X > 1.222) = 1 – F(1.222) = exp[– (1.222/β)α] = .1524. 

 

c. Set F(x) = .5 and solve for x: p = F(x) = 1 – ( )/xe
αβ− ⇒  x = β[–ln(1–p)]1/α =  

.863(–ln(1–.5))1/1.817 = .7054. 
 

d. Using the same math as part c, η(p) = β(–ln(1 – p))1/α = .863(–ln(1 – p))1/1.817 . 
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79. Notice that μX and σX are the mean and standard deviation of the lognormal variable X in this example; they 

are not the parameters μ and σ which usually refer to the mean and standard deviation of ln(X). We’re given 
μX = 10,281 and σX/μX = .40, from which σX = .40μX = 4112.4.  
a. To find the mean and standard deviation of ln(X), set the lognormal mean and variance equal to the 

appropriate quantities: 10,281 = E(X) = 
2 /2eµ σ+  and (4112.4)2 = V(X) = 

2 22 ( 1)e eµ σ σ+ − . Square the first 

equation: (10,281)2 = 
22e µ σ+ . Now divide the variance by this amount: 

 
2 2

2

2

2 2
2

2 2

1) 1 (.40) ln(1.16) .3852(4112.4) ( .16
(10,281)

5e e e
e

µ σ σ
σ

µ σ
σ

+

+

−
⇒ − = = == = ⇒  

That’s the standard deviation of ln(X). Use this in the formula for E(X) to solve for μ: 
2(.38525) /2 .0742110,281 e eµ µ µ+ += = ⇒ = 9.164. That’s E(ln(X)). 

 

b. P(X ≤ 15,000) = 
ln(15,000) 9.164

.38525
P Z − ≤ 
 

 = P(Z ≤ 1.17) = Φ(1.17) = .8790. 

 

c. P(X ≥ μX) = P(X ≥ 10,281) = 
ln(10,281) 9.164

.38525
P Z − 
 
 

≥ = P(Z ≥ .19) = 1 – Φ(0.19) = .4247.  Even 

though the normal distribution is symmetric, the lognormal distribution is not a symmetric distribution. 
(See the lognormal graphs in the textbook.) So, the mean and the median of X aren’t the same and, in 
particular, the probability X exceeds its own mean doesn’t equal .5. 

 
d. One way to check is to determine whether P(X < 17,000) = .95; this would mean 17,000 is indeed the 

95th percentile. However, we find that P(X < 17,000) = 
ln(17,000) 9.164

.38525
− 

 
 

Φ = Φ(1.50) = .9332, so 

17,000 is not the 95th percentile of this distribution (it’s the 93.32%ile).  
 
 
80.  

a. .5 =
ln )( ) (F µ

σ
µµ − Φ=  

 




, where µ  refers to the median of the lognormal distribution and µ and σ to 

the mean and sd of the normal distribution.  Since Φ(0) = .5, 
ln( ) 0µ µ

σ
−

=


, so eµµ = .  For the power 

distribution, µ = e3.5 = 33.12.  
 

b. Use the same math: 1 – α = Φ(zα) = P(Z ≤ zα) = ln( ) (ln( ) )X z P X zα α
µ µ σ

σ
− ≤ = ≤ + 

 
 

= ( )zP X e αµ σ+≤ , so the 100(1 – α)th percentile is ze αµ σ+ .  For the power distribution, the 95th 

percentile is 3.5 (1.645)(1.2) 5.474 238.41.e e+ = =  
 
 
81.  

a. V(X) = 2(2.05) .0 .066 ( 1)e e+ − = 3.96 ⇒ SD(X) = 1.99 months. 
 

b. P(X > 12) = 1 – P(X ≤ 12) = 
ln(12) 2

.
.05

0
1

6
P Z − 

− ≤ 
 

= 1 – Φ(1.78) = .0375. 
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c. The mean of X is E(X) = e2.05+.06/2 = 8.00 months, so P(µX – σX < X < µX + σX) = P(6.01 < X < 9.99) = 

ln(9.99) 2.05 ln(6.01) 2.05
.06 .06
− −   

Φ −Φ   
   

= Φ(1.03) – Φ(–1.05) = .8485 – .1469 = .7016. 

 

d. .5 = F(x) = ln( ) 2.05
.06

x − Φ 
 

 ⇒ ln( ) 2.05
.06

x −  = Φ–1(.5) = 0 ⇒ ln(x) – 2.05 = 0 ⇒ the median is given 

by x = e2.05 = 7.77 months.  
 

e. Similarly, .99ln( )
06

2.05
.

η −  = Φ–1(.99) = 2.33 ⇒ η.99 = e2.62 = 13.75 months. 

 

f. The probability of exceeding 8 months is P(X > 8) = 1 – ln(8) 2.05
.06
− 

Φ 
 

 = 1 – Φ(.12) = .4522, so the 

expected number that will exceed 8 months out of n = 10 is just 10(.4522) = 4.522. 
 
 
82.  

a. Let Y = X – γ = X – 1.0, so Y has a (non-shifted) lognormal distribution. The mean and variance of Y 
are µY = µX – 1.0 = 2.16 – 1.0 = 1.16 and σY = σX = 1.03. Using the same algebra as in Exercise 79, 

2
2 2

2 2

1.03
1.16

1 Y

Y

eσ σ
µ

− ==  ⇒ σ = 0.76245, and 
2 /2eµ σ+  = µY = 1.16 ⇒ µ = –0.14225. 

 

b. Using the information in a, P(X > 2) = P(Y > 1) = 1 – P(Y ≤ 1) = 1 – ln(1) 0.14225
0.76245

µ
σ
−   Φ = Φ   

   
 = 

Φ(.19) = .5753. 
 
c. From the previous exercise, the median of the distribution of Y is ηY = eµ = e–0.14225 = .8674. Since        

X = Y + 1, ηX = ηY + 1 = 1.8674. 
 

d. First, find the 99th percentile of Y: .99 = ln( )y µ
σ
− Φ 

 
 ⇒ 

ln( )y µ
σ
−

 = 2.33 ⇒ 

2.33 .14225 2.33(.76245)y e eµ σ+ − += =  = 5.126. Since X = Y + 1, the 99th percentile of X is 6.126. 
 
 

83. Since the standard beta distribution lies on (0, 1), the point of symmetry must be ½, so we require that 
( ) ( )1 1

2 2f fµ µ− = + . Cancelling out the constants, this implies 

( ) ( ) ( ) ( )1 1 1 11 1 1 1
2 2 2 2

α β α βµ µµ µ− − − −− + = + − , which (by matching exponents on both sides) in turn implies 
that α = β. 

Alternatively, symmetry about ½ requires μ = ½, so α
α β+

= .5. Solving for α gives α = β. 
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84.  

a. E(X) = 5 5 .714
5 2 7

= =
+

, V(X) = 10 .0255.
(49)(8)

=  

 

b. ( )
( ) ( ) ( ) ( )4 4 57

( ) 1 30
5 2

f x x x x x
Γ

= ⋅ ⋅ − = −
Γ Γ

 for 0 ≤ x ≤ 1, so P(X ≤ .2) = 
.2 5

0

430( .0016.)x dx x =−∫  

 
c. Similarly, P(.2 ≤ X ≤ .4) = 

.4 5

2

4

.
30( .03 .) 936x dxx =−∫  

 
d. If X is the proportion covered by the plant, then 1 – X is the proportion not covered by the plant.       

E(1 – X) = 1 – E(X) = 1 – 5 2 .286.
7 7
= =  

 
85.  

a. Notice from the definition of the standard beta pdf that, since a pdf must integrate to 1,  
( )
( ) ( ) ( ) ( ) ( ) ( )

( )
1 11 11 1

0 0
1 1 1x x dx x x dxβ βα αα β α β

α β α β
− −− −Γ + Γ Γ

= − ⇒ − =
Γ Γ Γ +∫ ∫  

Using this, E(X) = ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1 11 11

0 0
1 1x x x dx x x dxβ βα αα β α β

α β α β
− −−Γ + Γ +

⋅ − = −
Γ Γ Γ Γ∫ ∫ = 

( )
( ) ( )

( ) ( )
( )

1
1

α β α β
α β α β

Γ + Γ + Γ
⋅

Γ Γ Γ + +
 = ( )

( ) ( )
( )

( ) ( )
.

α α α β α
α β α β α β α β
Γ Γ +

⋅ =
Γ Γ + Γ + +

 

 

b. Similarly, E[(1 – X)m] = ( ) ( )
( ) ( ) ( )

1 11

0
1 1mx x x dxβαα β

α β
−−Γ +

− ⋅ −
Γ Γ∫ = 

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( )

( ) ( )
( ) ( )

1 11

0
1 m m m

x x dx
m m

βαα β α β α β α β β
α β α β α β α β β

+ −−Γ + Γ + Γ Γ + Γ + ⋅Γ +
= − = =
Γ Γ Γ Γ Γ + + Γ + + Γ∫ . 

If X represents the proportion of a substance consisting of an ingredient, then 1 – X represents the 
proportion not consisting of this ingredient. For m = 1 above,  

E(1 – X) = ( ) ( )
( ) ( )

( )
( ) ( )

(1 )
1 ( )

α β β α β β
α β β α β α β β α β

β βΓ + ⋅Γ + Γ + ⋅
= =

Γ + + Γ + + Γ
Γ

Γ +
.  

 
 
86.  

a. E(Y) = 10 1
20 2
YE α

α β
 ⇒ = =  + 

 and V(Y) = 
2

100 100 1
7 20 7(20) 28

YV  ⇒ = = 
 

 = 
( ) ( )2 1

αβ
α β α β+ + +

. After 

some algebra, the solutions are α = β = 3. 
 
b. f(y) = 30y2(1 – y)2, so  P(8 ≤ Y ≤ 12) = ( )

.6 22

.4
30 1 .365y y dy− =∫ . 

 
c. We expect it to snap at 10, so P(Y < 8 or Y > 12) = 1 – P(8 ≤ Y ≤ 12)  

= 1 – .365 = .665. 
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Section 4.6 
 
87. The given probability plot is quite linear, and thus it is quite plausible that the tension distribution is 

normal. 
 
 
88. The data values and z percentiles provided result in the probability plot below. The plot shows some non-

trivial departures from linearity, especially in the lower tail of the distribution. This indicates a normal 
distribution might not be a good fit to the population distribution of clubhead velocities for female golfers. 
 

210-1-2

95

90

85

80

75

70

Normal percentiles

Cl
ub

he
ad

 v
el

oc
ity

 
 
 
89. The plot below shows the (observation, z percentile) pairs provided.  Yes, we would feel comfortable using 

a normal probability model for this variable, because the normal probability plot exhibits a strong, linear 
pattern. 
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90. The Weibull plot uses ln(observations) and the extreme value percentiles of the pi values given; i.e., η(p) = 

ln[–ln(1–p)].  The accompanying probability plot appears sufficiently straight to lead us to agree with the 
argument that the distribution of fracture toughness in concrete specimens could well be modeled by a 
Weibull distribution. 

 

Extreme value percentile

ob
sv

10-1-2-3-4

1.1
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91. The (z percentile, observation) pairs are (–1.66, .736), (–1.32, .863), (–1.01, .865),  
(–.78, .913), (–.58, .915), (–.40, .937), (–.24, .983), (–.08, 1.007), (.08, 1.011), (.24, 1.064), (.40, 1.109), 
(.58, 1.132), (.78, 1.140), (1.01, 1.153), (1.32, 1.253), (1.86, 1.394).  
 
The accompanying probability plot is straight, suggesting that an assumption of population normality is 
plausible. 

 

210-1-2

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

z %ile

ob
sv

n



Chapter 4:  Continuous Random Variables and Probability Distributions 

 158 

 
92.  

a. The 10 largest z percentiles are 1.96, 1.44, 1.15, .93, .76, .60, .45, .32, .19 and .06; the remaining 10 are 
the negatives of these values.  The accompanying normal probability plot is reasonably straight.  An 
assumption of population distribution normality is plausible. 
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b. For a Weibull probability plot, the natural logs of the observations are plotted against extreme value 

percentiles; these percentiles are –3.68, –2.55, –2.01, –1.65, –1.37, –1.13, –.93, –.76, –.59, –.44, –.30, 
–.16, –.02, .12, .26, .40, .56, .73, .95, and 1.31. The accompanying probability plot is roughly as 
straight as the one for checking normality. 
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A plot of ln(x) versus the z percentiles, appropriate for checking the plausibility of a lognormal 
distribution, is also reasonably straight. Any of 3 different families of population distributions seems 
plausible. 
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93. To check for plausibility of a lognormal population distribution for the rainfall data of Exercise 81 in 

Chapter 1, take the natural logs and construct a normal probability plot.  This plot and a normal probability 
plot for the original data appear below.  Clearly the log transformation gives quite a straight plot, so 
lognormality is plausible.  The curvature in the plot for the original data implies a positively skewed 
population distribution — like the lognormal distribution. 
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94.   

a.  The plot of the original (untransformed) data appears somewhat curved.   
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b. The square root transformation results in a very straight plot.  It is reasonable that this distribution is 

normally distributed. 
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c. The cube root transformation also results in a very straight plot.  It is very reasonable that the 
distribution is normally distributed.  
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95. The pattern in the plot (below, generated by Minitab) is reasonably linear. By visual inspection alone, it is 

plausible that strength is normally distributed. 
 

P-Value:   0.008
A-Squared: 1.065

Anderson-Darling Normality Test

N: 153
StDev: 4.54186
Average: 134.902
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96. We use the data (table below) to create the desired plot. This half–normal plot reveals some extreme values, 

without which the distribution may appear to be normal. 

ordered absolute 
values (w’s) probabilities z values 

0.89 0.525 0.063 
1.15 0.575 0.19 
1.27 0.625 0.32 
1.44 0.675 0.454 
2.34 0.725 0.6 
3.78 0.775 0.755 
3.96 0.825 0.935 

12.38 0.875 1.15 
30.84 0.925 1.44 
43.4 0.975 1.96 
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97. The (100p)th percentile η(p) for the exponential distribution with λ = 1 is given by the formula               
η(p) = –ln(1 – p).  With n = 16, we need η(p) for p = 0.5 1.5 15.5

16 16 16, ,..., .  These are .032, .398, .170, .247, .330, 
.421, .521, .633, .758, .901, 1.068, 1.269, 1.520, 1.856, 2.367, 3.466.   
 
The accompanying plot of (percentile, failure time value) pairs exhibits substantial curvature, casting doubt 
on the assumption of an exponential population distribution.   

Because λ is a scale parameter (as is σ for the normal family), λ = 1 can be used to assess the plausibility of 
the entire exponential family. If we used a different value of λ to find the percentiles, the slope of the graph 
would change, but not its linearity (or lack thereof). 
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Supplementary Exercises 
 

98. The pdf of X is f(x) = 1
25

for 0 ≤ x ≤ 25 and is = 0 otherwise. 

a. P(10 ≤ X ≤ 20) = 10 .4.
25

=  

 

b. P(X ≥ 10) = P(10 ≤ X ≤ 25) = 15 .6.
25

=  

 

c. For 0 ≤ x ≤ 25, F(x) = 
0

1
25 25

x xdy =∫ .  F(x) = 0 for x < 0 and F(x) = 1 for x > 25. 

 

d. E(X) = 0 25 12.5
2 2

A B+ +
= = ; V(X) = 

2( ) 625 52.083
12 12

B A−
= = , so σX = 7.22. 

 
 
99.  

a. For 0 ≤ y ≤ 25, F(y) =
2 2 3

0

2

0

31 1
24 12 24 2 36 48 864

y
y u u u yu du y   

− = − = −   
   

∫ .  Thus  

F(y) = 
2 3

12

0 0

0
48
1 1

864
2

y y

y
y

y

<

 −


>

≤



≤



 

 
b. P(Y ≤ 4) = F(4) = .259. P(Y > 6) = 1 – F(6) = .5. 

P(4 ≤ X ≤ 6) = F(6) – F(4) = .5 – .259 = .241. 
 

c. E(Y) = 
123 412 2

0
0

31 2

0

1 11 6
12 24 12 24 3 48

1·
24

y dyy y y yy y dy
    − = − = − =    

     
∫ ∫ inches. 

E(Y2) = 12 4
3

0

1 43.2
24 12

yy dy
 

− = 
 

∫ , so V(Y) = 43.2 – 36 = 7.2. 

 
d. P(Y < 4 or Y > 8) = 1 – P(4 ≤ Y ≤ 8) = 1 – [F(8) – F(4)] = .518. 
 
e. The shorter segment has length equal to min(Y, 12 – Y), and 

E[min(Y, 12 – Y)] = ∫∫ ⋅−=⋅−
6

0

12

0
)()12,min()()12,min( dyyfyydyyfyy  

∫∫∫ ⋅−+⋅=⋅−+
12

6

6

0

12

6
)()12()()()12,min( dyyfydyyfydyyfyy  = 90 3.75

24
= inches. 
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100.  

a. Clearly f(x) ≥ 0.  Now check that the function integrates to 1: 

3
3 2 2

0
0 0

32 16 1632( 4) 0
( 4) ( 4) (0 4)

d x
x

x
x

dx
∞

∞ ∞ −= + = − = − −
+ + +∫ ∫  = 1.

 
 

b. For x ≤ 0, F(x) = 0. For x > 0, 

( ) ( ) ( )20
20 3 4

161
4

32
2
1

4
32)()(

+
−=







+
⋅−=

+
== ∫∫ ∞− xy

dy
y

dyyfxF
x

xx
. 

c. P(2 ≤ X ≤ 5) = F(5) – F(2) = 247.
36
161

81
161 =






 −−− . 

d. 
( ) ( )3 30

32 32( ) ( ) ( 4 4)
4 4

E X x f x dx x dx x dx
x x

∞ ∞ ∞

−∞ −∞
= ⋅ = ⋅ = + − ⋅

+ +∫ ∫ ∫  

  

( ) ( )
448

4
324

4
32

0 30 2 =−=
+

−
+

= ∫∫
∞∞

dx
x

dx
x

years. 

 

e. 
( ) ( )3 40 0

100 100 32 1 32003200 16.67
4 4 (3)(64)4 4

E dx dx
X x x x

∞ ∞  = ⋅ = = = + +  + +∫ ∫ . 

 
 
101.  

a. By differentiation, f(x) = 

2 1
7
3

0
7 3 1
4 4
0 otherwise

x x

x x



 −

≤ <

≤ <



 

x

f(
x)

2.52.01.51.00.50.0

1.0

0.8

0.6

0.4

0.2

0.0

 

b. P(.5 ≤ X ≤ 2) = F(2) – F(.5) = ( )3.51 7 7 3 111 2 2 .917.
2 3 4 4 3 12
  − − − ⋅ − = =  
  

 

 

c. Using the pdf from a, E(X) = 
7

31 2

0 1

7 3 131 1.213.
4 4 108

x x dx x x dx ⋅ + ⋅ − = = 
 ∫ ∫  
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102. Since we’re using a continuous distribution (Weibull) to approximate a discrete variable (number of 

individuals), a continuity correction is in order.  With α = 10 and β = 20, 
P(15 ≤ X ≤ 20) = P(14.5 < X < 20.5) continuity correction 
= F(20.5) – F(14.5) = [1 – exp(–(20.5/20)10)] – [1 – exp(–(14.5/20)10)]  = .7720 – .0393 = .7327. 

 
103.  

a. P(X > 135) = 1 135 137.2
1.6
− −Φ 

 
= 1 –  Φ(–1.38) = 1 – .0838 = .9162. 

 
b. With Y = the number among ten that contain more than 135 oz, Y ~ Bin(10, .9162).  

So, P(Y ≥ 8) = b(8; 10, .9162) + b(9; 10, .9162) + b(10; 10, .9162) =.9549.  
 

c. We want P(X > 135) = .95, i.e. 1 – 135 137.2
σ
− Φ 

 
 = .95 or 135 137.2

σ
− Φ 

 
 = .05. From the standard 

normal table, 135 137.2 1.65 1.33σ
σ
−

= − ⇒ = . 

 
 
104.  

a. Let X = the number of defectives in the batch of 250, so X ~ Bin(250, .05). We can approximate X by a 
normal distribution, since np = 12.5 ≥ 10 and nq = 237.5 ≥ 10.  The mean and sd of X are µ = np = 12.5 
and σ = 3.446.  Using a continuity correction and realizing 10% of 250 is 25, 

P(X ≥ 25) = 1 – P(X < 25) = 1 – P(X ≤ 24.5) ≈ 1– ( )24.5 12.5 1 3.48
3.446
− Φ = −Φ 

 
 =  

1 – .9997 = .0003. (The exact binomial probability, from software, is .00086.) 
 

b. Using the same normal approximation with a continuity correction, P(X = 10) =  

P(9.5 ≤ X ≤ 10.5) ≈ 10.5 12.5 9.5 12.5
3.446 3.446
− −   Φ −Φ   

   
= Φ(–.58) – Φ(–.87) = .2810 – .1922 = .0888.    

(The exact binomial probability is 10 240250
(.05) (.95)

10
 
 
 

= .0963.) 
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105. Let A = the cork is acceptable and B = the first machine was used. The goal is to find P(B | A), which can 

be obtained from Bayes’ rule: 
( ) ( | ) .6 ( | )( | )

( ) ( | ) ( ) ( | ) .6 ( | ) .4 ( | )
P B P A B P A BP B A

P B P A B P B P A B P A B P A B
= =

′ ′ ′+ +
 . 

From Exercise 38, P(A | B) = P(machine 1 produces an acceptable cork) = .6826 and P(A | B′) = P(machine 
2 produces an acceptable cork) = .9987. Therefore, 

.6(.6826)( | )
.6(.6826) .4(.9987)

P B A =
+

= .5062. 

 
106.  

a. F(x) = 0 for x < 1 and F(x) = 1 for x > 3.  For 1 ≤ x ≤ 3, 
21

3 1 1( ) 1.5 1
2

x
F x dy

y x
 = ⋅ = − 
 ∫ . 

 
b. P(X ≤ 2.5) = F(2.5) = 1.5(1 – .4) = .9; P(1.5 ≤ X ≤ 2.5) = F(2.5) – F(1.5) = .4. 
 

c. E(X) = ]
3 3 3

2 11 1

3 1 3 1 1.5ln( ) 1.648.
2 2

x dx dx x
x x

= ⋅ ⋅ = = =∫ ∫  

 

d. E(X2) = 
3 32

21 1

3 1 3 3
2 2

x dx dx
x

= ⋅ ⋅ = =∫ ∫ , so V(X) = E(X2) – [E(X)]2 = .284 and σ =.553. 

 
e. From the description, h(x) = 0 if 1 ≤ x ≤ 1.5; h(x) = x – 1.5 if 1.5 ≤ x ≤ 2.5 (one second later), and h(x) 

= 1 if 2.5 ≤ x ≤ 3. Using those terms,  

( )
2.5 3

2 21.5 2

3

1 .5

3 1 3 1[ ( )] 1.5 1 .267
2 2

( )E h X x dx dxx
x

h d
x

x= = − ⋅ ⋅ + ⋅ ⋅ =∫ ∫ ∫ . 
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107.  

a.  

x

f(
x)

2.52.01.51.00.50.0-0.5-1.0

0.5

0.4

0.3

0.2

0.1

0.0

 

b. F(x) = 0 for x < –1, and F(x) = 1 for x > 2.  For –1 ≤ x ≤ 2, 
1

3
21

9( ) (4 ) 11 12
27

x
x y xF y xd

−

+ −
= − =∫ . This is 

graphed below. 

2.52.01.51.00.50.0-0.5-1.0-1.5

1.0

0.8

0.6

0.4

0.2

0.0

x

F(
x)

 
 

c. The median is 0 iff F(0) = .5. Since F(0) = 27
11 , this is not the case.  Because 27

11 < .5, the median must 
be greater than 0. (Looking at the pdf in a it’s clear that the line x = 0 does not evenly divide the 
distribution, and that such a line must lie to the right of x = 0.) 

 
d. Y is a binomial rv, with n = 10 and p = P(X > 1) = 1 – F(1) = 27

5 . 
 

 
108.  

a. The expected value is just a weighted average: E(X) = pµ1 + (1 – p)µ2 = .35(4.4) + .65(5.0) = 4.79 µm. 
(This can be shown rigorously using a similar “distribution of integrals” technique as we’ll see in b.)  

 
b. Using the hint, 

5.0 5.0

4.4 4.4
5.0 5.0

4.

1 1 2 2

1 1 2 2

1 2

4 4.4

(4.4 5.0) ( ) [ ( ; (1 )

                       

, ) ( ; , )]

, ) ( ; , )

5.0) (1

    ( ; (1 )

                           ) (4.4 5.0)(4.4

P X f x pf xdx x dx

dx x dx

p f

p f x p f

p p P XP X

µ σ µ σ

µ σ µ σ

< < = = + −

= + −

< + − <= < <

∫ ∫
∫ ∫  

where X1 and X2 are normal rvs with parameters specified in f1 and f2.   
P(4.4 < X1 < 5.0) = P(0 < Z < 2.22) = .9868 – .5 = .4868 and  
P(4.4 < X1 < 5.0) = P(–2.22 < Z < 0) = .5 – .0132 = .4868; the choice of endpoints 4.4 and 5.0 makes 
these equal. Putting it all together, P(4.4 < X < 5.0) = .35(.4868) + .65(.4868) = .4868. 
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c. Similarly, P(X < 4.79) = .35P(X1 < 4.79) + .65P(X2 < 4.79) = .35Φ(1.44) + .65Φ(–0.78) = .35(.9251) + 
.65(.2177) = .4653. 
Since P(X < µX) ≠ .5, the mean is not equal to the median (the mean is only the 46th percentile). So, in 
particular, the shape of the pdf of X is not symmetric, even though the individual normal distributions 
from which X was created are symmetric. (The pdf of X appears below.) 

 
109. Below, exp(u) is alternative notation for eu. 

a. P(X ≤ 150) = (150 150)exp exp exp[ exp(0)] exp( 1) .368
90

 − −  − = − = − =    
, 

P(X ≤ 300) = exp[ exp( 1.6667)] .828− − = , and P(150 ≤ X ≤  300) = .828 – .368 = .460. 
 

b. The desired value c is the 90th percentile, so c satisfies  

.9 = ( 150)exp exp
90

c − −  −     
. Taking the natural log of each side twice in succession yields ( 150)

90
c− −  

= ln[–ln(.9)] = –2.250367, so c = 90(2.250367) + 150 = 352.53. 
 

c. Use the chain rule: f(x) = F′(x) = ( ) ( )exp exp p 1ex
x xα α
β ββ

 − − − −   
− ⋅− ⋅    
     

− = 

( ) ( )exp xp1 e
x xα α
β ββ

 − − − 
− −  
   

. 

 
d. We wish the value of x for which f(x) is a maximum; from calculus, this is the same as the value of x 

for which ln[f(x)] is a maximum, and ln[f(x)] = ( )( )/ln x x
e α β α

β
β − − −

−− −  .  The derivative of ln[f(x)] is 

( )( )/ ( )/1 1ln 0x xd
dx

x
e eα β α ββ

β β
α

β
− − − − 

− = + 


−
− − −


 ; set this equal to 0 and we get ( )/ 1xe α β− − = , so 

( ) 0
x α
β

− −
= , which implies that x = α.  Thus the mode is α. 
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e. E(X) = .5772β + α = 201.95, whereas the mode is α = 150 and the median is the solution to F(x) = .5. 

From b, this equals –90ln[–ln(.5)] + 150 = 182.99.   
Since mode < median < mean, the distribution is positively skewed. A plot of the pdf appears below. 

 

 
 
110. We have a random variable T ~ N(μ, σ). Let f(t) denote its pdf. 

a. The “expected loss” is the expected value of a piecewise-defined function, so we should first write the 
function out in pieces (two integrals, as seen below). Call this expected loss Q(a), to emphasize we’re 
interested in its behavior as a function of a.  We have: 

 

( ) [ ( , )]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) [1 ( )]

a

a
a a

a a
a

a

dt dt

dt dt

Q a E L a T

k a t f t t a f t

ka f t k tf t tf t a f t

kaF a k tf t tf t a F

d

a

t dt

dt dt

∞

∞

∞ ∞

−

−∞ −

∞

−

∞

∞

=

= − + −

= − + −

= − + − −

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

 

where F(a) denotes the cdf of T. To minimize this expression, take the first derivative with respect to 
a, using the product rule and the fundamental theorem of calculus where appropriate:  

( ) ( ) ( ) ( ) [1 ( )]

( ) ( ) ( ) 0 ( ) 1 ( ) ( )
( ) ( ) ( ) ( ) 1 ( ) ( )

( 1) ( ) 1

a

a

Q a kaF a k tf t tf t a F a

kF a kaF a kaf a af a F a aF a
kF a kaf a kaf a af a F a af a

dt d

k F

t

a

∞

∞−

′ = − + − −

′ ′= + − + − − + +
= + − − − + +
= + −

∫ ∫
 

Finally, set this equal to zero, and use the fact that, because T is a normal random variable, 

( ) aF a µ
σ
− Φ 

 
= : 

1( 1) ( ) 1 0 ( 1) 1 11 0 ·
1 1

k F a k a a a
k k

µ µ µ σ
σ σ

−− −   Φ − = ⇒Φ = ⇒ = + Φ  + − = ⇒     + +
+  

   
 

This is the critical value, a*, as desired. 
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b. With the values provided, a* = ( )1 11100,000 10,000 100,000 10,000 0.33
2 1

− −  =  Φ


+


+ Φ
+

= 100,000 + 

10,000(–0.44) from the standard normal table = 100,000 – 4,400 = $95,600. The probability of an 

over-assessment equals P(95,600 > T) = P(T < 96,500) = 95,600 100,000
10,000
− Φ 

 
= Φ(–0.44) = .3300, 

or 33%. Notice that, in general, the probability of an over-assessment using the optimal value of a is 

equal to 1
1k +

. 

 
111.  

a. From a graph of the normal pdf or by differentiation of the pdf, x* = µ. 
 
b. No; the density function has constant height for A ≤ x ≤ B. 
 
c. f(x; λ) is largest for x = 0 (the derivative at 0 does not exist since f is not continuous there), so x* = 0. 
 

d. ( ) ( ) ( )( ) ( )ln[ ; , ] ln ln 1 ln( ) xf x xαα β β α α
β

= − − Γ + − −  , and ( ) 1 1ln[ ; , ]d f x
dx x

αα β
β

−
= − . Setting this 

equal to 0 gives the mode: x* = (α – 1)β. 
 

e. The chi-squared distribution is the gamma distribution with α = ν/2 and β = 2. From d, 

( )* 1 2 2.
2

x ν ν = − = − 
 

 

 
 
112.  

a. 0 .2 .2

0
( ) .1 .1 .5 .5 1.x xf x dx e dx e dx

∞ ∞ −

−∞ −∞
= + = + =∫ ∫ ∫  

 
b. For x < 0, F(x) = .2 .21.1

2
x y xe dy e
−∞

=∫ . 

For x ≥ 0, F(x) = 
0 .2 .2 .2 .2

0 0

1 1.1 .1( .1
2 2

) 1
x xyy y xx

e dy e dy ef y dy e dy−

−∞ −

− −

∞

−= + = + = −∫ ∫∫ ∫ . 
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c. P(X < 0) = F(0) = .5; P(X < 2) = F(2) = 1 – .5e–.4 = .665; P(–1 ≤ X ≤ 2) = F(2) – F(–1) = .256; and 

P(|X| > 2) = 1 – (–2 ≤ X ≤ 2) = 1 – [F(2) – F(–2)] = .670. 
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113.  

a. E(X) = 1 2
1 20

(1 )x xx p e p e dxλ λλ λ
∞ − − ⋅ + − ∫  

= 1 2
1 20 0

(1 )x xp x e dx p x e dxλ λλ λ
∞ ∞− −+ −∫ ∫

 

( )
1 2

1 pp
λ λ

−
= + . (Each of 

the two integrals represents the expected value of an exponential random variable, which is the 
reciprocal of λ.) Similarly, since the mean-square value of an exponential rv is E(Y2) = V(Y) + [E(Y)]2 = 

1/λ2 + [1/λ]2 = 2/λ2, E(X2) = 
0

2 ( )x x dxf
∞

∫  = … = ( )
2 2

1 2

2 12 pp
λ λ

−
+ . From this, 

V(X) = ( )
2 2

1 2

2 12 pp
λ λ

−
+

( ) 2

1 2

1 pp
λ λ

− 
− + 
 

. 

 
b. For x > 0, F(x; λ1, λ2, p) = 1 20

( ; , , )
x

f y p dyλ λ∫  
= ( )1 2

1 20
1

x y yp e p e dyλ λλ λ− − + − ∫   
= ( )1 2

1 20 0
1

x xy yp e dy p e dyλ λλ λ− −+ −∫ ∫ = 1 2(1 ) (1 )(1 )x xp e p eλ λ− −− + − − . For x ≤ 0, F(x) = 0. 

 
c. P(X > .01) = 1 – F(.01) = 1 – [.5(1 – e–40(.01)) + (1 – .5)(1 – e–200(.01))] = .5e–0.4 + .5e–2 = .403.   

 
d. Using the expressions in a, µ = .015 and σ2 = .000425 ⇒ σ = .0206. Hence,  

P(µ – σ < X < µ + σ) = P(–.0056 < X < .0356) = P(X < .0356) because X can’t be negative 
= F(.0356) = … = .879. 

 

e. For an exponential rv, CV = 1/ 1
1/

σ λ
µ λ
= = .  For X hyperexponential,  

CV = 
2 2 2

2

( 1
( ) )E E XX µσ

µ µ µ
=

−
= − = [ ]

2 2

1 2

1 2
2

2 / 2(1 ) / 1
/ (1 ) /

p p
p pλ λ

λ λ+ −
−

+ −
  

= 

( )
( )

2 2
2 1

2
2 1

2 (1 )
1

(1
1

)
2r

p p

p p

λ λ

λ λ

+ −
− =

−
−

+
, where r = 

( )

2 2
2 1

2
2 1

(1 )
(1 )

p p
p p
λ λ
λ λ

+ −

+ −
.  But straightforward algebra shows that 

r > 1 when λ1 ≠ λ2, so that CV > 1. 
 

f. For the Erlang distribution, nµ
λ

=  and nσ
λ

= , so CV = 11
<

n
 for n > 1. 

 
114.  

a. Provided α > 1, 
1

1

5
1)51 ( 5

1
k dx k k
x

α
α

α α
α

−∞ −−= = ⋅ ⇒ =
−∫ . 

 

b. For x ≥ 5, F(x) = 
1

1 1 1
1

5

( 55 .1) 55 1
x

dy x
y x

α
α α α

α

α

α −−
− − −   = − − = −     

−
∫  For x < 5, F(x) = 0. 

 

c. Provided α > 2, E(X) = ( ) 1

15 5

1 5 15
2

kx dx dx
x x

α

α α

α α
α

−
∞ ∞

−

− −
⋅ = =

−∫ ∫ . 

d. Let Y = ln(X/5). Then FY(y) = ( )ln 5 (5
5

)
5

y y yX XP y P e P X e F e    ≤ = ≤ = ≤ =    
      

= 
151

5 ye

α−
 −  
 

= 

( )11 ye α− −− , the cdf of an exponential rv with parameter α – 1. 
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115.  

a. Since ln o

i

I
I

 
 
 

has a normal distribution, by definition o

i

I
I

 has a lognormal distribution. 

 

b. ( )2 2 ln ln 2 1 ln ln 2 1 ln )( 2o o o
o i

i i i

I I IP I I P P P P X
I I I

        
> = > = > = − ≤ = −                

≤
  

= 

( )ln 2 11 1 6.14 1.
.05
− −Φ = −Φ − = 

 
 

 

c. 1 .0025/2 2.72o

i

IE e
I

+ 
= = 

 
 and ( )2 .0025 .0025 1 .0185o

i

IV e e
I

+ 
= ⋅ − = 

 
. 

 
 
116.  

a. The accompanying Weibull pdf plot was created in Minitab. 

225200175150125100

0.020

0.015

0.010

0.005

0.000

D
en

si
ty

Distribution Plot
Weibull, Shape=9, Scale=180, Thresh=0

 
 

b. P(X > 175) = 1 – F(175; 9, 180) = ( )9175/180 .4602.e− =  
P(150 ≤ X ≤ 175) = F(175; 9, 180) – F(150; 9, 180) = .5398 – .1762 = .3636. 

 
c. From b, the probability a specimen is not between 150 and 175 equals 1 – .3636 = .6364. So,  

P(at least one is between 150 and 175) = 1 – P(neither is between 150 and 175) = 1 – (.6364)2 = .5950.  
 
d. We want the 10th percentile:  .10 = F(x; 9, 180) = ( )9/1801 xe−− .  A small bit of algebra leads us to x = 

180(–ln(1–.10))1/9 = 140.178.  Thus, 10% of all tensile strengths will be less than 140.178 MPa. 
 
 

117. F(y) = P(Y ≤ y) = P(σZ + µ ≤ y) = 
21

2
1
2

y
zyP Z e dz

µ
σµ

σ π

−
−

−∞

− ≤ = 
  ∫  ⇒ by the fundamental theorem of 

calculus,  f(y) = F′(y) =  
2 2

1 1
2 21 1 1

2 2

y y

e e
µ µ

σ σ

σ σπ π

− −   − −   
   ⋅ =  , a normal pdf with parameters µ and σ. 
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118.  

a. FY(y) = P(Y ≤ y) = P(60X ≤ y) = ; .
60 60
y yP X F α

β
  ≤ =   

   
  Thus fY(y) =  

( ) ( )
1 601 1;

60 60 60

yyf y eα β
αα

β β β α

−
− 

⋅ = 
Γ 

, which shows that Y has a gamma distribution with parameters 

α and 60β. 
 
b.  With c replacing 60 in a, the same argument shows that cX has a gamma distribution with parameters 

α and cβ. 
 
 
119.  

a. Y = –ln(X) ⇒ x = e–y = k(y), so k′(y) = –e–y.  Thus since f(x) = 1, g(y) = 1 ⋅ | –e–y | = e–y for 0 < y < ∞.    
Y has an exponential distribution with parameter λ = 1. 

 

b. y = σZ + µ ⇒ z = k(y) = y µ
σ
−  and k′(y) = 1

σ
, from which the result follows easily. 

 

c. y = h(x) = cx ⇒ x = k(y) = y
c

and k′(y) = 1
c

, from which the result follows easily. 

 
 
120.  

a. If we let 2α = and 2β σ= , then we can manipulate f(v) as follows: 
( ) ( )

2
2 2 2 2 / 2 //2 /2 2 1 1

2 2 2

2 2( )
2 ( 2 )

v vv vvf v e ve v e v e
ασσ βσ α

α

α
σ σ βσ

− −− − − −= = = = , which is in the Weibull family of 

distributions. 
 

b. Use the Weibull cdf: P(V ≤ 25) = ( )25 625
2 800

2

(25;2, 2 ) 1 1F e eσσ
− −= − = −  = 1 – .458 = .542.  

 
 
121.  

a. Assuming the three birthdays are independent and that all 365 days of the calendar year are equally 

likely, P(all 3 births occur on March 11) =
31

365
 
 
 

. 

 

b. P(all 3 births on the same day) = P(all 3 on Jan. 1) + P(all 3 on Jan. 2) + … =  
31

365
 
 
 

+
31

365
 
 
 

+ ... = 

365
31

365
 
 
 

= 
21

365
 
 
 

. 
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c. Let X = deviation from due date, so X ∼ N(0, 19.88).  The baby due on March 15 was 4 days early, and  

P(X = –4) ≈ P(–4.5 < X < –3.5) = 3.5 4.5
19.88 19.88
− −   Φ −Φ   

   
=  

Φ(–.18) – Φ(–.237) = .4286 – .4090 = .0196. 
Similarly, the baby due on April 1 was 21 days early, and P(X = –21) ≈ 

( ) ( )20.5 21.5 1.03 1.08 .1515 .1401 .0114
19.88 19.88
− −   Φ −Φ = Φ − −Φ − = − =   

   
. 

Finally, the baby due on April 4 was 24 days early, and P(X = –24) ≈ .0097. 
 
Again assuming independence, P(all 3 births occurred on March 11) = (.0196)(.0114)(.0097) = 
.0002145.  
 

d. To calculate the probability of the three births happening on any day, we could make similar 
calculations as in part c for each possible day, and then add the probabilities. 

 
122.  

a. f(x) = xe λλ −  and F(x) = xe λ−−1 , so r(x) = 
1 (1 )

x x

x x
e e

e e

λ λ

λ λ

λ λ λ
− −

− −= =
− −

, a constant; this is consistent with 

the memoryless property of the exponential distribution. 
 

b. For the Weibull distribution, r(x) = 1( )
1 ( )

f x x
F x

α
α

α
β

− 
=  −  

. For α > 1, r(x) is increasing (since the 

exponent on x is positive), while for α < 1 it is a decreasing function. 
 

c. ln(1 – F(x)) = 
2

2
2( ) 1 ( ) 1

2

xxx xr x dxdx x F x e
α

βα α
β β

 
− −  

   
= − − − = − − ⇒ = −  

   
∫ ∫ . 

2

2( ) ( ) 1
xxxf x F x e

α
βα

β

 
− −  

  ′= = − 
 

 for 0 ≤ x ≤ β. 

 
 
123.  

a. F(x) = P(X ≤ x) = ( ) ( ) ( )1 ln 1 ln(1 ) 1 xP U x P U x P U e λλ
λ

− − − ≤ = − ≥ − = − ≥ 
 

 

( )1 1x xP U e eλ λ− −= ≤ − = − since the cdf of a uniform rv on [0, 1] is simply F(u) = u.  Thus X has an 

exponential distribution with parameter λ. 
 

b. By taking successive random numbers u1, u2, u3, … and computing ( )1 ln 1
10i ix u= − − for each one,  we 

obtain a sequence of values generated from an exponential distribution with parameter λ = 10. 
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124.  

a. E(g(X)) ≈ E[g(µ) + g′(µ)(X – µ)] = E(g(µ)) + g′(µ) ⋅ [E(X) – µ], but E(X) – µ = 0 and E(g(µ)) = g(µ) 
(since g(µ) is constant), giving E(g(X)) ≈ g(µ). 
 
V(g(X)) ≈ V[g(µ) + g′(µ)(X – µ)] = V[g′(µ)(X – µ)] = (g′(µ))2 ⋅ V(X – µ) = (g′(µ))2 ⋅ V(X). 

 

b. 
2( ) , ( )v vg I g I

I I
−′= = , so ( )( ) (

2
)

0IR
I

v vE g I g µµ
µ

== ≈ =  and 

( )
2

2
2 2

2)) ( )( ) ( ( .025R I I R I
II

vV I vV g I g vσ µ σ σ σ
µµ

 −′= ≈ ⋅ = 


⋅ = ⇒ ⋅


≈ . 

 
 
125. If g(x) is convex in a neighborhood of μ, then g(µ) + g′(µ)(x – µ) ≤ g(x). Replace x by X:  

E[g(µ) + g′(µ)(X – µ)] ≤ E[g(X)] ⇒  E[g(X)] ≥ g(µ) + g′(µ)E[(X – µ)] = g(µ) + g′(µ) · 0 = g(µ).  
That is, if g(x) is convex, g(E(X)) ≤ E[g(X)]. 

 
 

126. For y > 0, 
2 2

2
2

2( ) ( )
2 2

yX yF y P Y y P y P X P X
ββ

β
    

= ≤ = ≤ = ≤ = ≤           
.  Now take the cdf of X 

(Weibull), replace x by 
2
yβ , and then differentiate with respect to y to obtain the desired result f(y). 

 
 
127.  

a. E(X) = 150 + (850 – 150)
28

8
+

 = 710 and V(X) = 
)128()28(
)2)(8()150850(

2

2

+++

−  = 7127.27 ⇒ SD(X) ≈ 84.423. 

Using software, P(|X – 710| ≤ 84.423) = P(625.577 ≤ X ≤ 794.423) = 
7 1

794.423

625.577

1 (10) 150 850
700 (8) (2) 700 700

x x dxΓ − −   
   Γ Γ    ∫ = .684.  

 

b. P(X > 750) = 
7 1

850

750

1 (10) 150 850
700 (8) (2) 700 700

x x dxΓ − −   
   Γ Γ    ∫ = .376. Again, the computation of the 

requested integral requires a calculator or computer. 
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128.  

a. For w < 0, F(w) = 0.  
F(0) = P(V ≤ vd) = 1 – exp(–λvd), since V is exponential.  
For w > 0, F(w) = P(W ≤ w) = P(k(V – vd) ≤ w) = P(V ≤ vd + w/k) = 1 – exp(–λ[vd + w/k]). This can be 
written more compactly as  
 

[ ]– / 0

0 0
( )

1 dv w k

w
F w

e wλ +

<

≥
= 
−

 

 

b. For w > 0, f(w) = F′(w) = 
k
λ exp(–λ[vd + w/k]). Since the only other possible value of W is zero, which 

would not contribute to the expected value, we can compute E(W) as the appropriate integral: 
 

E(W) =
0

exp( [ / ])dw v w k dw
k
λ λ

∞
− +∫ =

0
exp( ) exp( / )dv w w k dw

k
λλ λ

∞
− −∫  = .dvk e λ

λ
−  
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CHAPTER 5 
 

Section 5.1 
 
1.  

a. P(X = 1, Y = 1) = p(1,1) = .20. 
 
b. P(X ≤ 1 and Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .42. 
 
c. At least one hose is in use at both islands.  P(X ≠ 0 and Y ≠ 0) = p(1,1) + p(1,2) + p(2,1) + p(2,2) = .70. 
 
d. By summing row probabilities, pX(x) = .16, .34, .50 for x = 0, 1, 2, By summing column probabilities, 

pY(y) = .24, .38, .38 for y = 0, 1, 2.  P(X ≤ 1) = pX(0) + pX(1) = .50. 
 
e. p(0,0) = .10, but pX(0) ⋅ pY(0) = (.16)(.24) = .0384 ≠ .10, so X and Y are not independent. 

 
2.  

a. For each coordinate, independence means p(x, y) = pX(x) · pY(y). 
    x    
 p(x, y) 0 1 2 3 4  
 0 .01 .02 .03 .03 .02 .1 
y 1 .03 .06 .09 .09 .06 .3 
 2 .04 .08 .12 .12 .08 .4 
 3 .02 .04 .06 .06 .04 .2 
  .1 .2 .3 .3 .2  

 
b. From the table, P(X ≤ 1 and Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .01 + .03 + .02 + .06 = .12.  

Using the marginal distributions, P(X ≤ 1) = .1 + .2 = .3, while P(Y ≤ 1) = .1 + .3 = .4. Sure enough, 
(.3)(.4) = .12. 

 
c. P(X + Y ≤ 1) = p(0,0) + p(1,0) + p(0,1) = .01 + .02 + .03 = .06. 

 
d. P(X = 0 ∪ Y = 0) = P(X = 0) + P(Y = 0) – P(X = 0 ∩ Y = 0) =.1 + .1 – .01 = .19. 

 
3.  

a. p(1,1) = .15, the entry in the 1st row and 1st column of the joint probability table. 
 
b. P(X1 = X2) = p(0,0) + p(1,1) + p(2,2) + p(3,3) = .08 + .15 + .10 + .07 = .40. 
 
c. A = {X1 ≥ 2 + X2 ∪ X2 ≥ 2 + X1}, so P(A) = p(2,0) + p(3,0) +  p(4,0) + p(3,1) +  p(4,1) + p(4,2) + p(0,2) 

+ p(0,3) + p(1,3) =.22. 
 

d. P(X1 + X2 = 4) = p(1,3) + p(2,2) + p(3,1) + p(4,0) = .17. 
P(X1 + X2 ≥ 4) = P(X1 + X2 = 4) + p(4,1) + p(4,2) + p(4,3) + p(3,2) + p(3,3) + p(2,3)=.46. 
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4.  
a. p1(0) = P(X1 = 0) = p(0,0) + p(0,1) + p(0,2) + p(0,3) = .19 

p1(1) = P(X1 = 1) = p(1,0) + p(1,1) + p(1,2) + p(1,3) = .30, etc. 
 

x1 0 1 2 3 4 
p1(x1) .19 .30 .25 .14 .12 

 
b. p2(0) = P(X2 = 0) = p(0,0) + p(1,0) + p(2,0) + p(3,0) + p(4,0) = .19, etc. 
 

x2 0 1 2 3 
p2(x2) .19 .30 .28 .23 

 
c. p(4,0) = 0, yet p1(4) = .12 > 0 and p2(0) = .19 > 0 , so p(x1, x2) ≠ p1(x1) ⋅ p2(x2) for every (x1, x2), and the 

two variables are not independent. 
 
 
5.  

a. p(3, 3) = P(X = 3, Y = 3) = P(3 customers, each with 1 package)  
= P( each has 1 package | 3 customers) ⋅ P(3 customers) = (.6)3 ⋅ (.25) = .054. 

 
b. p(4, 11) = P(X = 4, Y = 11) = P(total of 11 packages | 4 customers) ⋅ P(4  customers). 

 Given that there are 4 customers, there are four different ways to have a total of 11 packages: 3, 3, 3, 2 
or 3, 3, 2, 3 or 3, 2, 3, 3 or 2, 3, 3, 3.  Each way has probability (.1)3(.3), so p(4, 11) = 4(.1)3(.3)(.15) = 
.00018. 

 
 
6.  

a. p(4,2) = P(Y = 2 | X = 4) ⋅ P(X = 4) = 0518.)15(.)4(.)6(.
2
4 22 =⋅



















 . 

 
b. P(X = Y) = p(0,0) + p(1,1) + p(2,2) + p(3,3) + p(4,4) = .1 + (.2)(.6) + (.3)(.6)2 + (.25)(.6)3 + (.15)(.6)4 = 

.4014. 
 
c. p(x,y) = 0 unless y = 0, 1, …, x and x = 0, 1, 2, 3, 4.  For any such pair,  

p(x,y) = P(Y = y | X = x) ⋅ P(X = x) = (.6) (.4) ( )y x y
X

x
p x

y
− 
⋅ 

 
. As for the marginal pmf of Y,  

pY(4) = P(Y = 4) = P(X = 4, Y = 4) = p(4,4) = (.6)4⋅(.15) = .0194; 

pY(3) = p(3,3) + p(4,3) = 1058.)15)(.4(.)6(.
3
4

)25(.)6(. 33 =







+ ; similarly, 

pY(2) = p(2,2) + p(3,2) + p(4,2) = )25)(.4(.)6(.
2
3

)3(.)6(. 22








+  2678.)15(.)4(.)6(.

2
4 22 =







+ , pY(1) = 

p(1,1) + p(2,1) + p(3,1) + p(4,1) = .3590, and  
pY(0) = 1 – [.3590+.2678+.1058+.0194] = .2480. 
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7.  

a. p(1,1) = .030. 
 
b. P(X ≤ 1 and Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .120. 
 
c. P(X = 1) = p(1,0) + p(1,1) + p(1,2) = .100; P(Y = 1) = p(0,1) + … + p(5,1) = .300. 
 
d. P(overflow) = P(X + 3Y > 5) = 1 – P(X + 3Y ≤ 5) = 1 – P((X,Y)=(0,0) or …or (5,0) or (0,1) or (1,1) or 

(2,1)) = 1 – .620 = .380. 
 
e. The marginal probabilities for X (row sums from the joint probability table) are pX(0) = .05, pX(1) = 

.10, pX(2) = .25,  pX(3) = .30, pX(4) = .20, pX(5) = .10; those for Y (column sums) are pY(0) = .5, pY(1) = 

.3, pY(2) = .2.  It is now easily verified that for every (x,y), p(x,y) = pX(x) ⋅ pY(y), so X and Y are 
independent. 

 
 
8.  

a. p(3, 2) = P(X = 3 and Y = 2) = P(3 supplier 1 comps & 2 supplier 2 comps selected) = 

P(3 from supplier 1, 2 from supplier 2, 1 from supplier 3) = 

8 10 12
3 2 1

30
6

   
   
   

 
 
 

= .0509. 

b. Replace 3 with x, 2 with y, and 1 with the remainder 6 – x – y. The resulting formula is 

 

8 10 12
6

3
( , )

0
6

x y x y
p x y

   
   
   =

− −
 
 
 

 

This formula is valid for non-negative integers x and y such that x + y ≤ 6. 
 
 
9.  

a. 
30 30 2 2

20 20
1 ( , ) ( )f x y dxdy K x y dxdy

∞ ∞

−∞ −∞
= = +∫ ∫ ∫ ∫

30 30 30 302 2

20 20 20 20
K x dydx K y dxdy= +∫ ∫ ∫ ∫

30 302 2

20 20
10 10K x dx K y dy= +∫ ∫

19,000 320 .
3 380,000

K K = ⋅ ⇒ = 
 

 

 

b. P(X < 26 and Y < 26) = 
26

26 26 262 2 2

20

3

20 20
20

( )
3
yK x y dxdy K x y dx

 
+ = + 

 
∫ ∫ ∫  

226

20
319(6 2)dxK x += ∫  = 

K(38,304) = .3024. 
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c. The region of integration is labeled III below. 

 
 
 
 
 
 
 
 
 

P(| X – Y | ≤ 2) = ( , )
III

f x y dxdy∫∫ =1 ( , ) ( , )
I II

f x y dxdy f x y dxdy− −∫∫ ∫∫ = 

28 30 30 2

20 2 22 20
1 ( , ) ( , )

x

x
f x y dydx f x y dydx

−

+
− −∫ ∫ ∫ ∫ = .3593(after much algebra). 

 

d. 
30330 2 2 2

20
20

( , ) ( ) 10
3

( )X
yf f x y dy K x y dy Kx Kx

∞

−∞
= == + +∫ ∫ = 10Kx2 + .05, for 20 ≤ x ≤ 30. 

 
e. fY(y) can be obtained by substituting y for x in (d);  clearly f(x,y) ≠ fX(x) ⋅ fY(y), so X and Y are not 

independent. 
 
 
10.  

a. Since fX(x) = 1
6 5−

= 1 for 5 ≤ x ≤ 6, similarly fY(y) = 1 for 5 ≤ y ≤ 6, and X and Y are independent, 

f(x,y) = fX(x) · fY(y)  =
1 5 6,5 6
0 otherwise

x y≤ ≤ ≤ ≤



 

 
 

b. P(5.25 ≤ X ≤ 5.75, 5.25 ≤ Y ≤ 5.75) = P(5.25 ≤ X ≤ 5.75) ⋅ P(5.25 ≤ Y ≤ 5.75) by independence = 
(.5)(.5) = .25. 

 
c. The region A is the diagonal stripe below. 
 
 
 
 
 
 

 
 

P((X,Y) ∈ A) = 1
A

dxdy∫∫ = the area of A = 1 – (area of I + area of II ) 

= 1 – 5 5
6 6

1 5 1 5
2 6 2 6

 ⋅ ⋅ ⋅ ⋅


+ 


= 25 111 .306.
36 36

− = =  

 

I

II

6/1+= xy 6/1−= xy

5

5

6

6

I

II

2+= xy 2−= xy

20

20

30

30

III
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11.  

a. Since X and Y are independent,  p(x,y) = 
1 2 1 2

1 2 1 2

! !
)

!
( ·

!
) (

x y x y

X Y
e e ep

x
x

y x y
p y

µµ µ µµ µµ µ− −− −

⋅ ==   

for x = 0, 1, 2, …; y = 0, 1, 2, …. 
 
b. P(X + Y ≤ 1) = p(0,0)  + p(0,1) + p(1,0) = … = [ ]1 2

1 21e µ µ µ µ− − + + . 
 

c. P(X + Y= m) = 1 2

0 0

1 2( , )
! ( )!

m k m

k k

km

P X k Y m k e
k m k

µ µ µ µ
=

−
− −

=

= = − =
−∑ ∑  = 

1 2

1
0

2
!

! !( )!
k m k

m

k

e m
m k m k

µ µ

µµ
− −

=

−

−∑  = 

1 2

0
1 2!

m
k

k

k mm
k

e
m

µ µ

µµ
=

− −
− 

 
 

∑  = 
1 2

1 2(
!

)me
m

µ µ

µ µ
− −

+  by the binomial theorem. We recognize this as the pmf of a 

Poisson random variable with parameter 1 2µ µ+ . Therefore, the total number of errors, X + Y, also has 
a Poisson distribution, with parameter 1 2µ µ+ . 

 
12.  

a. P(X> 3) = (1 )

3 0 3
.050.x y xxe dydx e dx

∞ ∞ ∞− + −= =∫ ∫ ∫  

 
b. The marginal pdf of X is (1 )

0
( ) x y x

Xf xe ex dy
∞ − + −== ∫  for x ≥ 0. The marginal pdf of Y is 

(1 )
23

( 1
(1 )

)Y
x yf xe dxy

y
∞ − + =

+
= ∫  for y ≥ 0.  It is now clear that f(x,y) is not the product of  the marginal 

pdfs, so the two rvs are not independent. 
 

c. P(at least one exceeds 3) = P(X > 3 or Y > 3) = 1 – P(X ≤ 3 and Y ≤ 3)  
=

3 3 3 3(1 )

0 0 0 0
1 1x y x xyxe dydx xe e dy− + − −− = −∫ ∫ ∫ ∫  

=
3 3 3 12

0
1 (1 ) .25 .25 .300.x xe e dx e e− − − −− − = + − =∫  

 
 
13.  

a. f(x,y) = fX(x) ⋅ fY(y) = 
0, 0

0 otherwise

x ye x y− − ≥ ≥



 

 
b. By independence, P(X ≤ 1 and Y ≤ 1) = P(X ≤ 1) ⋅ P(Y ≤ 1) = (1 – e–1) (1 – e–1) = .400. 
 
c. P(X + Y ≤ 2) = 

2 2 2 (2 )

0 0 0
1

x x y x xe dydx e e dx
− − − − − − = − ∫ ∫ ∫  =

2 2 2 2

0
( ) 1 2 .594.xe e dx e e− − − −− = − − =∫  

 
d. P(X + Y ≤ 1) = 

1 (1 ) 1

0
1 1 2 .264x xe e dx e− − − − − = − = ∫ ,  

so P(1 ≤ X + Y ≤ 2 ) = P(X + Y ≤ 2) – P(X + Y ≤ 1) = .594 – .264 = .330. 
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14.  

a. P(X1 < t, X2 < t, … , X10 < t) = P(X1 < t) … P(X10 < t) = 10(1 )te λ−− . 
 
b. If “success” = {fail before t}, then p = P(success) = 1 te λ−− ,  

and P(k successes among 10 trials) = 1010
(1 ) ( )t k t ke e

k
λ λ− − − 

− 
 

. 

 
c. P(exactly 5 fail) = P(5 with par. λ fail, other 4 don’t, 1 with par. θ doesn’t fail) +  

P(4 with par. λ fail, other 5 don’t, 1 with par. θ fails) = 

( ) ( ) ( ) ( )5 44 59 9
1 ( ) 1 ( ) 1

5 4
t t t t t te e e e e eθ θλ λ λ λ− − − − − −   

− + − −   
   

. 

 
 
15.  

a. Each Xi has cdf F(x) = P(Xi ≤ x) = 1 xe λ−− . Using this, the cdf of Y is 
F(y) = P(Y ≤ y) = P(X1 ≤ y ∪ [X2 ≤ y ∩ X3 ≤ y]) 
= P(X1 ≤ y) + P(X2 ≤ y ∩ X3 ≤ y) – P(X1 ≤y ∩ [X2 ≤ y ∩ X3 ≤ y]) 
=  2 3(1 ) (1 ) (1 )y y ye e eλ λ λ− − −− + − − −  for y > 0. 

  
The pdf of Y is f(y) = F′(y) = ( ) ( )22(1 ) 3(1 )y y y y ye e e e eλ λ λ λ λλ λ λ− − − − −+ − − − = 2 34 3y ye eλ λλ λ− −−         
for y > 0. 

b. E(Y) = ( )2 3

0

1 1 24 3 2
2 3 3

y yy e e dyλ λλ λ
λ λ λ

∞ − −  ⋅ − = − = 
 ∫ . 

  
 
16.  

a. f(x1, x3) = ( )1 31

1 2 3 2 1 2 3 20
( , , ) 144 1

x x
f x x x dx x x x dx

∞ − −

−∞
= −∫ ∫ = ( )( )2

1 3 1 372 1 1x x x x− − −  for    0 ≤ x1, 0 ≤ x3, 

x1 + x3 ≤ 1. 
 

b. P(X1 + X3 ≤ .5) = 1.5 .5 2
1 3 1 3 3 10 0

72 (1 )(1 )
x

x x x x dx dx
−

− − −∫ ∫ = (after much algebra) .53125. 

 
c. ( )( )

1

11 2
1 1 3 3 1 3 1 3 30

( ) ( , ) 72 1 1
x

Xf x f x x dx x x x x dx
∞ −

−∞
= = − − −∫ ∫ = 2 3 5

1 1 1 118 48 36 6x x x x− + −  for 0 ≤ x1 ≤ 1. 

 



Chapter 5:  Joint Probability Distributions and Random Samples 

 183 

 
17.  

a. Let A denote the disk of radius R/2. Then P((X,Y) lies in A) =  ( , )
A

f x y dxdy∫∫  

2 2

2

22

1 area of 1 .25
4

1 ( / 2)

A A

Adxdy
R R

Ry
R

dxd
R π π π

π
π

= = = = = =∫∫ ∫∫ . Notice that, since the joint pdf of X 

and Y is a constant (i.e., (X,Y) is uniform over the disk), it will be the case for any subset A that P((X,Y) 

lies in A) = 2

area of A
Rπ

. 

 

b. By the same ratio-of-areas idea,
2

2

1, .
2 2 2 2
R R R R RP X Y

Rπ π
 − ≤ ≤ − ≤ ≤ = = 
 

 This region is the square 

depicted in the graph below. 
  
 
 
 
 
 
 
 
 

 

c. Similarly, 
2

2

2 2, .
2 2 2 2

R R R R RP X Y
Rπ π

 − ≤ ≤ − ≤ ≤ = = 
 

 This region is the slightly larger square 

depicted in the graph below, whose corners actually touch the circle. 
  
 

 
 
 
 
 
 
 

 
 

d. ( )
2 2

2 2

2 2

2 2

1 2( , )
R x

X R x

R xf x f x y dy dy
R Rπ π

∞ −

−∞ − −

−
= = =∫ ∫ for –R ≤ x ≤ R.   

Similarly, fY(y) = 
2 2

2

2 R y
Rπ
−

 for –R ≤ y ≤ R.   X and Y are not independent, since the joint pdf is not 

the product of the marginal pdfs: 
2 22 2

2 22

1 22 R yR x
RR Rππ π

≠
−−

⋅ . 
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18.  

a. pY|X(y | 1) results from dividing each entry in x = 1 row of the joint probability table by pX(1) = .34: 

|
.08(0 |1) .2353
.34Y Xp = =        |

.20(1|1) .5882

.34Y Xp = =  |
.06(2 |1) .1765
.34Y Xp = =  

 
b. pY|X(y | 2) is requested; to obtain this divide each entry in the x = 2 row by  

pX(2) = .50: 
 

y 0 1 2 

pY|X(y | 2) .12 .28 .60 

 
c. P(Y ≤ 1 | X = 2) = pY|X(0 | 2) + pY|X(1 | 2) = .12 + .28 = .40. 
 
d. pX|Y(x | 2) results from dividing each entry in the y = 2 column by py(2) = .38: 

   
x 0 1 2 

pX|Y(x | 2) .0526 .1579 .7895 

 
 

19. Throughout these solutions, 3
380,000

K = , as calculated in Exercise 9. 

a. 
2 2

| 2

( , ) ( )( | )
( ) 10 .05Y X

X

f x y K x yf y x
f x Kx

+
= =

+
 for 20 ≤ y ≤ 30. 

2 2

| 2

( , ) ( )( |
(

)
10 .05)X Y

Y

f x y
f y

K x yf x y
Ky

=
+

=
+ for 20 ≤ x ≤ 30.   

 

b. P(Y ≥ 25 | X = 22) = ∫
30

25
| )22|( dyyf XY  = 

2 230

225

((22) )
10 (22) .05
K y dy

K
+
+∫ = .5559. 

P(Y ≥ 25) = 
30 30 2

25 25
( ) (10 .05) .75Yf y dy Ky dy= + =∫ ∫ . So, given that the right tire pressure is 22 psi, it’s 

much less likely that the left tire pressure is at least 25 psi. 
 

c. E( Y | X = 22) = 
2 230

| 220

((22) )( | 22)
10 (22) .05Y X
K yy f y dy y dy

K
∞

−∞

+
⋅ = ⋅

+∫ ∫ = 25.373 psi. 

E(Y2 | X = 22) = 
2 230 2

220

((22) ) 652.03
10 (22) .05
k yy dy

k
+

⋅ =
+∫  ⇒  

V(Y | X = 22) = E(Y2 | X = 22) – [E( Y | X = 22)]2 = 652.03 – (25.373)2 = 8.24 ⇒ 
SD(Y | X = 22) = 2.87 psi. 
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20.  

a. P(X1 = 2, … , X6 = 2) = 
!2!2!2!2!2!2

!12 (.24)2(.13)2(.16)2(.20)2(.13)2(.14)2 = .00247. 

 
b. The marginal pmf of X4, the number of orange candies, is Bin(n = 20, p = p4 = .2). Therefore, P(X4 ≤ 5) 

= B(5; 20, .2) = .8042. 
 

c. Let Y = X1 + X3 + X4 = the number of blue, green, or orange candies. Then Y is also binomial, but with 
parameter p = p1 + p3 + p4 = .24 + .16 + .20 = .60. Therefore, P(Y ≥ 10) = 1 – P(Y ≤ 9) =  
1 – B(9; 20, .60) = .8725. 

 
21.  

a. ( )
3 1 2

1 2

1 2 3
| , 3 1 2

, 1 2

( , , )| ,
( , )X X X

X X

f x x xf x x x
f x x

=  , where 
1 2, 1 2( , )X Xf x x =  the marginal joint pdf of X1 and X2, 

i.e.
1 2, 1 2( , )X Xf x x =  1 2 3 3( , , )f x x x dx

∞

−∞∫ . 

 

b. ( )
2 3 1

1

1 2 3
, | 2 3 1

1

( , , ), |
( )X X X

X

f x x xf x x x
f x

=  , where
1 1 1 2 3 2 3( ) ( , , )Xf x f x x x dx dx

∞ ∞

−∞ −∞
= ∫ ∫ , the marginal pdf of X1. 

 

Section 5.2 
 
22.  

a. ( ) ( ) ( , )E X Y x y p x y+ = +∑∑ = (0 + 0)(.02) + (5 + 0)(.04) + … + (10 + 15)(.01) = 14.10.  
Note: It can be shown that E(X + Y) always equals E(X) + E(Y), so in this case we could also work out 
the means of X and Y from their marginal distributions: E(X) = 5.55, E(Y) = 8.55, so E(X + Y) = 5.55 + 
8.55 = 14.10. 

b. For each coordinate, we need the maximum; e.g., max(0,0) = 0, while max(5,0) = 5 and max(5,10) = 
10. Then calculate the sum: max( , ) max( , )·( ) ( , )E pX Y x xy y=∑∑ =  
max(0,0)(.02) + max(5,0)(.04) + … + max(10,15)(.01) = 0(.02) + 5(.04) + … + 15(.01) = 9.60. 

 
 

23. E(X1 – X2) = ( )
1 2

4 3

1 2 1 2
0 0

( , )
x x

x x p x x
= =

− ⋅∑∑ = (0 – 0)(.08) + (0 – 1)(.07) + … + (4 – 3)(.06) = .15. 

Note: It can be shown that  E(X1 – X2) always equals E(X1) – E(X2), so in this case we could also work out 
the means of X1 and X2 from their marginal distributions: E(X1) = 1.70 and E(X2) = 1.55, so E(X1 – X2) = 
E(X1) – E(X2) = 1.70 – 1.55 = .15. 
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24. Let h(X, Y) = the number of individuals who handle the message. A table of the possible values of (X, Y) 

and of h(X, Y) are displayed in the accompanying table. 
 

    y   
 h(x, y) 1 2 3 4 5 6 
 1 - 2 3 4 3 2 
 2 2 - 2 3 4 3 
x 3 3 2 - 2 3 4 
 4 4 3 2 - 2 3 
 5 3 4 3 2 - 2 
 6 2 3 4 3 2 - 

 
Since p(x,y) = 30

1  for each possible (x, y),  

E[h(X ,Y)] = 841
30 30( , ) ( , ) ( , ) 2.80

x y x y
h x y p x y h x y⋅ = ⋅ = ==∑∑ ∑∑  . 

 
 

25. The expected value of X, being uniform on [L – A, L + A], is simply the midpoint of the interval, L. Since Y 
has the same distribution, E(Y) = L as well. Finally, since X and Y are independent,  
E(area) = E(XY) = E(X) ⋅ E(Y) = L ⋅ L = L2. 

 
 
26. Revenue = 3X + 10Y, so E(revenue) = E(3X + 10Y) 

5 2

0 0
(3 10 ) ( , ) 0 (0,0) ... 35 (5,2) 15.4

x y
x y p x y p p

= =

= + ⋅ = ⋅ + + ⋅ =∑∑ = $15.40. 

 
27. The amount of time Annie waits for Alvie, if Annie arrives first, is Y – X; similarly, the time Alvie waits for 

Annie is X – Y. Either way, the amount of time the first person waits for the second person is       
h(X, Y) = |X – Y|. Since X and Y are independent, their joint pdf is given by fX(x) · fY(y) = (3x2)(2y) = 6x2y. 
From these, the expected waiting time is  
E[h(X,Y)] = 

1 1 1 1 2

0 0 0 0
( , ) 6x y f x y dxdy x y x ydxdy− ⋅ = − ⋅∫ ∫ ∫ ∫  

( ) ( )
1 1 12 2

0 0 0

1 1 16 6
6 12 4

x

x
x y x ydydx x y x ydydx= − ⋅ + − ⋅ = + =∫ ∫ ∫ ∫ hour, or 15 minutes. 

 
 
28. E(XY) = ( , ) ( ) ( ) ( ) ( )x y x y

x y x y x y
xy p x y xy p x p y xp x yp y⋅ = ⋅ ⋅ = ⋅∑∑ ∑∑ ∑ ∑ = E(X) ⋅ E(Y).  For the continuous 

case, replace summation by integration and pmfs by pdfs. 
 
 

29. Cov(X,Y) = 2
75

−  and 2
5X Yµ µ= = . 

E(X2) = 
1 2

0
( )Xx f x dx⋅∫

1 3 2

0

12 112 (1 )
60 5

x x dx= − = =∫ , so V(X) = 
21 2 1

5 5 25
 − = 
 

. 

Similarly, V(Y) = 1
25

, so 
2
75

, 1 1
25 25

2
3

50
75X Yρ −

= = − = −
⋅

. 
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30.  

a. E(X) = 5.55, E(Y) = 8.55, E(XY) = (0)(.02) + (0)(.06) + … + (150)(.01) = 44.25, so Cov(X,Y) = 44.25 – 
(5.55)(8.55) = –3.20. 

 

b. By direct computation, 2 212.45 and 19.15X Yσ σ= = , so ,
3.20 .207

(12.45)(19.15)X Yρ −
= = − . 

 
 
31.  

a. E(X) = 
30 30 2

20 20
( ) 10 .05 25.1925

76
329 ( )Xxf x dx x Kx dx E Y = + = =  =∫ ∫ , 

E(XY) = 
30 30 2 2

20 20
( ) 641.44724375

38
xy K x y dxdy =⋅ + =∫ ∫ ⇒  

Cov(X, Y) = 641.447 – (25.329)2 = –.1082. 
 

b. E(X2) = 
30 2 2 2

20
10 .05 649.83 246 ( )7040

57
x Kx dx E Y + = == ∫  ⇒  

V(X) = V(Y) = 649.8246 – (25.329)2 = 8.2664 ⇒ .1082 .0131.
(8.2664)(8.2664)

ρ −
= = −  

 
 

32. (1 )

0 0
( ) 1x yE XY xy xe dydx

∞ ∞ − += ⋅ = =∫ ∫  . Yet, since the marginal pdf of Y is 
( )2( ) 1
1Y yf

y
=

−
 for y ≥ 0, 

( )20
( )

1
yE Y dy
y

∞
= = ∞

+∫ . Therefore, Cov(X, Y) and Corr(X, Y) do not exist, since they require this integral 

(among others) to be convergent. 
 
 
33. Since E(XY) = E(X) ⋅ E(Y), Cov(X, Y) = E(XY) – E(X) ⋅ E(Y) = E(X) ⋅ E(Y) – E(X) ⋅ E(Y) = 0, and since 

Corr(X, Y) = Cov( , )

X Y

X Y
σ σ

, then Corr(X, Y) = 0. 

 
 
34.  

a. In the discrete case, V[h(X,Y)] = E{[h(X,Y) – E(h(X,Y))]2} = 
2 2 2[ ( , ) ( ( , ))] ( , ) or [ ( , ) ( , )] [ ( ( , ))]

x y x y
h x y E h X Y p x y h x y p x y E h X Y− −∑∑ ∑∑  For the continuous case, 

replace the double sums with double integrals and the pmf with the pdf. 
 
b. E[h(X, Y)] = E[max(X, Y)] = 9.60, and E[h2(X, Y)] = E[(max(X, Y))2] =  

(0)2(.02) + (5)2(.06) + … + (15)2(.01) = 105.5, so V[max(X, Y)] = 105.5 – (9.60)2 = 13.34. 
 
35.  

a. Cov(aX + b, cY + d) = E[(aX + b)(cY + d)] – E(aX + b) ⋅ E(cY + d) 
= E[acXY + adX + bcY + bd] – (aE(X) + b)(cE(Y) + d) 
= acE(XY) + adE(X) + bcE(Y) + bd – [acE(X)E(Y) + adE(X) + bcE(Y) + bd]   
= acE(XY) – acE(X)E(Y) = ac[E(XY) – E(X)E(Y)] = acCov(X, Y). 
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b. Corr(aX + b, cY + d) = Cov( , ) Cov( , )
( ) ( ) | | | | ( ) ( )

aX b cY d ac X Y
SD aX b SD cY d a c SD X SD Y

+ +
=

+ + ⋅
 

Corr( , )
| |
ac X Y
ac

= . When a 

and c have the same signs, ac = |ac|, and we have  
Corr(aX + b, cY + d) = Corr(X, Y) 
 

c.   When a and c differ in sign, |ac| = –ac, and we have Corr(aX + b, cY + d) = –Corr(X, Y). 
 
 
36. Use the previous exercise: Cov(X, Y) = Cov(X, aX + b) = aCov(X, X) = aV(X) ⇒  

so Corr(X,Y) = 
· ·| | | |
( ) ( )

X Y XX

aV X aV X a
a aσ σ σ σ

= = = 1 if a > 0, and –1 if a < 0. 

 
 

Section 5.3 
 
37. The joint pmf of X1 and X2 is presented below. Each joint probability is calculated using the independence 

of X1 and X2; e.g., p(25, 25) = P(X1 = 25) · P(X2 = 25) = (.2)(.2) = .04. 
   x1   
 p(x1, x2) 25 40 65  
 25 .04 .10 .06 .2 
x2 40 .10 .25 .15 .5 
 65 .06 .15 .09 .3 
  .2 .5 .3  

 
a. For each coordinate in the table above, calculate x . The six possible resulting x values and their 

corresponding probabilities appear in the accompanying pmf table.  
 

x  25 32.5 40 45 52.5 65 
( )p x  .04 .20 .25 .12 .30 .09 

  
From the table, ( (25)(.04) 32.5(.20) ... 65(.09)) 44.5.E X = + + + =  From the original pmf, μ = 25(.2) + 
40(.5) + 65(.3) = 44.5. So, )(E X = μ. 

 

b. For each coordinate in the joint pmf table above, calculate 
1

2
2

21 (
2 1

)i
i

xs x
=

−
−

= ∑ . The four possible 

resulting s2 values and their corresponding probabilities appear in the accompanying pmf table. 
 

s2 0 112.5 312.5 800 
p(s2) .38 .20 .30 .12 

  
From the table, E(S2) = 0(.38) + … + 800(.12) = 212.25. From the original pmf,  
σ2 = (25 – 44.5)2(.2) + (40 – 44.5)2(.5) + (65 – 44.5)2(.3) = 212.25. So, E(S2) = σ2. 
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38.  

a. Since each X is 0 or 1 or 2, the possible values of To are 0, 1, 2, 3, 4.  
P(To = 0) = P(X1 = 0 and X2 = 0) = (.2)(.2) = .04 since X1 and X2 are independent. 
P(To = 1) = P(X1 = 1 and X2 = 0, or X1 = 0 and X2 = 1) = (.5)(.2) + (.2)(.5) = .20. 
Similarly, P(To = 2) = .37, P(To = 3) = .30, and P(To = 4) = .09. These values are displayed in the pmf 
table below. 
 

to 0 1 2 3 4 
p(to) .04 .20 .37 .30 .09 

 
 

b. E(To) = 0(.04) + 1(.20) + 2(.37) + 3(.30) + 4(.09) = 2.2. This is exactly twice the population mean: 
E(To) = 2μ. 
 

c. First, 2( )oE T = 02(.04) + 12(.20) + 22(.37) + 32(.30) + 42(.09) = 5.82. Then V(To) = 5.82 – (2.2)2 = .98. 
This is exactly twice the population variance:  V(To) = 2σ2. 

 
d. Assuming the pattern persists (and it does), when To = X1 + X2 + X3 + X4 we have E(To) = 4μ = 4(1.1) = 

4.4 and V(To) = 4σ2 = 4(.49) = 1.96. 
 
e. The event {To = 8} occurs iff we encounter 2 lights on all four trips; i.e., Xi = 2 for each Xi. So, 

assuming the Xi are independent, 
1 2 3 4 1 48) ( 2 2 2 2) ( 2) ( 2( )o P X X X X P X XP PT = = = ∩ = ∩ = ∩ = = = = = (.3)4 = 0081. 

Similarly, To = 7 iff exactly three of the Xi are 2 and the remaining Xi is 1. The probability of that event 
is P(To = 7) = (.3)(.3)(.3)(.5) + (.3)(.3)(.5)(.3) + … = 4(.3)3(.5) = .054. Therefore, P(To ≥ 7) = P(To = 7) 
+ P(To = 8) = .054 + .0081 = .0621. 

 
 
 
39. X is a binomial random variable with n = 15 and p = .8. The values of X, then X/n = X/15 along with the 

corresponding probabilities b(x; 15, .8) are displayed in the accompanying pmf table. 
 

x 0 1 2 3 4 5 6 7 8 9 10 
x/15 0 .067 .133 .2 .267 .333 .4 .467 .533 .6 .667 

p(x/15) .000 .000 .000 .000 .000 .000 .001 .003 .014 .043 .103 
            
x 11 12 13 14 15       

x/15 .733 .8 .867 .933 1       
p(x/15) .188 .250 .231 .132 .035       

 
 
40.  

a. There are only three possible values of M: 0, 5, and 10. Let’s find the probabilities associated with 0 
and 10, since they’re the easiest. 
P(M = 0) = P(all three draws are 0) = P(X1 = 0) · P(X2 = 0) · P(X3 = 0) = (5/10)(5/10)(5/10) = .125. 
P(M = 10) = P(at least one draw is a 10) = 1 – P(none of the three draws is a 10) = 
1 – P(X1 ≠ 10) · P(X2 ≠ 10) · P(X3 ≠ 10) = 1 – (8/10)(8/10)(8/10) = .488. 
Calculating all the options for M = 5 would be complicated; however, the three probabilities must sum 
to 1, so P(M = 5) = 1 – [.125 + .488] = .387. The probability distribution of M is displayed in the pmf 
table below. 
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m 0 5 10 
p(m) .125 .387 .488 

 
An alternative solution would be to list all 27 possible combinations using a tree diagram and 
computing probabilities directly from the tree. 

 
b. The statistic of interest is M, the maximum of X1, X2, or X3. The population distribution for the Xi is as 

follows: 
x 0 5 10 

p(x) 5/10 3/10 2/10 
 

Write a computer program to generate the digits 0-9 from a uniform distribution.  Assign a value of x = 
0 to the digits 0-4, a value of x = 5 to digits 5-7, and a value of x = 10 to digits 8 and 9.  Generate 
samples of increasing sizes, keeping the number of replications constant, and compute  
M = max(X1,…, Xn) from each sample.  As n, the sample size, increases, P(M = 0) goes to zero and 
P(M = 10) goes to one.  Furthermore, P(M = 5) goes to zero, but at a slower rate than P(M = 0). 

 
 
41. The tables below delineate all 16 possible (x1, x2) pairs, their probabilities, the value of x for that pair, and 

the value of r for that pair. Probabilities are calculated using the independence of X1 and X2. 
 

(x1, x2) 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 
probability .16 .12 .08 .04 .12 .09 .06 .03 

x  1 1.5 2 2.5 1.5 2 2.5 3 
r 0 1 2 3 1 0 1 2 
         

(x1, x2) 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4 
probability .08 .06 .04 .02 .04 .03 .02 .01 

x  2 2.5 3 3.5 2.5 3 3.5 4 
r 2 1 0 1 3 2 1 2 

 
a. Collecting the x values from the table above yields the pmf table below. 

 
x  1 1.5 2 2.5 3 3.5 4 

 ( )p x  .16 .24 .25 .20 .10 .04 .01 
 
b. P( X ≤ 2.5) = .16 + .24 + .25 + .20 = .85. 
 
c. Collecting the r values from the table above yields the pmf table below. 

r 0 1 2 3 
 

p(r) .30 .40 .22 .08 
 

d. With n = 4, there are numerous ways to get a sample average of at most 1.5, since X ≤ 1.5 iff the sum 
of the Xi is at most 6. Listing out all options, P( X ≤ 1.5) = P(1,1,1,1) + P(2,1,1,1) + … + P(1,1,1,2) + 
P(1,1,2,2) + … + P(2,2,1,1) + P(3,1,1,1) + … + P(1,1,1,3)  

 = (.4)4 + 4(.4)3(.3) + 6(.4)2(.3)2 + 4(.4)2(.2)2 = .2400. 
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42.  

a. For each of the 
6
2
 
 
 

= 15 pairs of employees, we calculate the sample mean. The collected values of 

x are displayed in the table below. 
x  27.75 28.0 29.7 29.95 31.65 31.9 33.6 

p( x ) 2
15  1

15  3
15  2

15  4
15  2

15  1
15  

 
b. There are now only 3 possible x values, corresponding to the 3 offices.  

x  27.75 31.65 31.9 
p( x ) 1/3 1/3 1/3 

  
c. All three mean values are the same: 30.4333. 

 
 
43. The statistic of interest is the fourth spread, or the difference between the medians of the upper and lower 

halves of the data.  The population distribution is uniform with A = 8 and B = 10.   Use a computer to 
generate samples of sizes n = 5, 10, 20, and 30 from a uniform distribution with A = 8 and B = 10.  Keep 
the number of replications the same (say 500, for example).  For each replication, compute the upper and 
lower fourth, then compute the difference.  Plot the sampling distributions on separate histograms for n = 5, 
10, 20, and 30. 

 
 
44. Use a computer to generate samples of sizes n = 5, 10, 20, and 30 from a Weibull distribution with 

parameters as given, keeping the number of replications the same.  For each replication, calculate the mean. 
The sampling distribution of x for n = 5 appears to be normal. Since larger sample sizes will produce 
distributions that are closer to normal, the others will also appear normal.  

 
 
45. Using Minitab to generate the necessary sampling distribution, we can see that as n increases, the 

distribution slowly moves toward normality.  However, even the sampling distribution for n = 50 is not yet 
approximately normal.  

 
n = 10 
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Section 5.4 
 
46. µ = 70 GPa, σ = 1.6 GPa 

a. The sampling distribution of X  is centered at )(E X = μ = 70 GPa, and the standard deviation of the 

X distribution is 1.
1
6
6

X
X n

σ
σ = = = 0.4 GPa. 

 
b. With n = 64, the sampling distribution of X  is still centered at )(E X = μ = 70 GPa, but the standard 

deviation of the X distribution is 1.
6
6
4

X
X n

σ
σ = = = 0.2 GPa.  

 
c. X is more likely to be within 1 GPa of the mean (70 GPa) with the second, larger, sample.  This is due 

to the decreased variability of X that comes with a larger sample size. 
 
 
47.  

a. In the previous exercise, we found )(E X = 70 and ( )SD X = 0.4 when n = 16. If the diameter 
distribution is normal, then X is also normal, so      

P(69 ≤ X ≤ 71) = 69 70 71 70
0.4 0.4

P Z− − ≤ ≤ 
 

= P(–2.5 ≤ Z ≤ 2.5) = Φ(2.5) – Φ(–2.5) = .9938 – .0062 = 

.9876. 
 

b. With n = 25, )(E X = 70 but .
2
6( )
5

1S XD =  = 0.32 GPa. So, P( X  > 71) = 71 70
0.32

P Z >
− 

 
 

=  

1 – Φ(3.125) = 1 – .9991 = .0009. 
 
48.  

a. No, it doesn’t seem plausible that waist size distribution is approximately normal. The normal 
distribution is symmetric; however, for this data the mean is 86.3 cm and the median is 81.3 cm (these 
should be nearly equal). Likewise, for a symmetric distribution the lower and upper quartiles should be 
equidistant from the mean (or median); that isn’t the case here.  
 
If anything, since the upper percentiles stretch much farther than the lower percentiles do from the 
median, we might suspect a right-skewed distribution, such as the exponential distribution (or gamma 
or Weibull or …) is appropriate.  
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b. Irrespective of the population distribution’s shape, the Central Limit Theorem tells us that X  is 

(approximately) normal, with a mean equal to μ = 85 cm and a standard deviation equal to 
/ 15 / 277 .9nσ = = cm. Thus, 

86.3 8586.3) 1 (1.44) .0749(
.9

P X P Z − ≥ = ≥ = −Φ = 
   

 
c. Replace 85 with 82 in (b): 

86.3 8286.3) 1 (4.77) 1 1 0
9

(
.

P X P Z − ≥ = ≥ = −Φ ≈ − = 
 

 

That is, if the population mean waist size is 82 cm, there would be almost no chance of observing a 
sample mean waist size of 86.3 cm (or higher) in a random sample if 277 men. Since a sample mean of 
86.3 was actually observed, it seems incredibly implausible that μ would equal 82 cm. 

 
 
49.  

a. 11 P.M. – 6:50 P.M. = 250 minutes.  With To = X1 + … + X40 = total grading time, 
(40)(6) 240

oT nµ µ= = =  and 37.95,
oT nσ σ= ⋅ =  so P(To ≤ 250) ≈ 

( )250 240 .26 .6026.
37.95

P Z P Z− ≤ = ≤ = 
 

 

 
b. The sports report begins 260 minutes after he begins grading papers. 

( ) ( )0
260 240260 .53 .2981.

37.95
P T P Z P Z− > = > = > = 

 
 

 
 
50.  

a. No, courtship time cannot plausibly be normally distributed. Since X must be non-negative, 
realistically the interval µ ± 3σ should be entirely non-negative; however, with µ = 120 and σ = 110, 
the left boundary of the distribution is barely more than 1 standard deviation below the mean. 
  

b. By the Central Limit Theorem, X is approximately normal, with mean µ = 120 min and standard 
deviation / 110 / 50nσ =  min. Hence, 

P(100 ≤ X ≤ 1250) ≈ 100 120 125 120
110 / 50 110 / 50

P Z− − ≤ ≤ 
 

= P(–0.64 ≤ Z ≤ 0.32) = Φ(0.32) – Φ(–0.64) = 

.6255 – .2611 = .3644. 
 

c. Similarly, 150 125150)
110 / 50

(X P ZP − > ≈ > 
 

 = 1 – Φ(1.61) = 1 – .9463 = .0537. 

 
d. No. According to the guideline given in Section 5.4, n should be greater than 30 in order to apply the 

CLT. Thus, using the same procedure for n = 15 as was used for n = 50 would not be appropriate. 
 



Chapter 5:  Joint Probability Distributions and Random Samples 

 194 

 
51. Individual times are given by X ~ N(10, 2).  For day 1, n = 5, and so  

11 10( ( 1.12) .8686
2 / 5

11)P P Z P ZX − ≤ = ≤ = 
 

≤ = . 

 For day 2, n = 6, and so 

 P( X  ≤ 11)= 11 10( ( 1.22) .8888
2 / 6

11)P P Z P ZX − ≤ = ≤ = 
 

≤ =  . 

 Finally, assuming the results of the two days are independent (which seems reasonable), the probability the 
sample average is at most 11 min on both days is (.8686)(.8888) = .7720. 

 
 
52. We have X ~ N(10,1), n = 4, (4)(10) 40

oT nµ µ= = =  and 2
oT nσ σ= = . Hence,  

To ~ N(40, 2). We desire the 95th percentile of To: 40 + (1.645)(2) = 43.29 hours. 
 
53.   

a. With the values provided, 
51 50( ( 2.5) 1 .9938 .0062
1.2

51
9

)
/

P P Z P ZX − ≥ = ≥ = − = 
 

≥ = . 

 
b. Replace n = 9 by n = 40, and 

51 50( ( 5.27) 0
1.2 / 4

51)
0

P P Z P ZX − ≥ = ≥=  


≥ ≈


. 

 
54.  

a. With n = 5, 2.65Xµ µ= = , .85 .
25

17X
X

n
σσ = = = . 

P( X ≤ 3.00)= 3.00 2.65 ( 2.06) .9803.
.17

P Z P Z− ≤ = ≤ = 
 

 

P(2.65 ≤ X  ≤ 3.00) ( 3.00) ( 2.65) .4803.P X P X= ≤ − ≤ =  
 

b. P( X  ≤ 3.00) = 3.00 2.65 .99
.85 /

P Z
n

− ≤ = 
 

implies that 3.00 2.65 2.33,
85 / n

−
=  from which      n = 32.02.  

Thus, n = 33 will suffice. 
 
55.  

a. With Y = # of tickets, Y has approximately a normal distribution with μ = 50 and 7.071µσ = = . So, 
using a continuity correction from [35, 70] to [34.5, 70.5], 

P(35 ≤ Y ≤ 70) ≈ 34.5 50 70.5 50
7.071 7.071

P Z− − ≤ ≤ 
 

 = P(–2.19 ≤ Z ≤ 2.90) = .9838. 

 
b. Now μ = 5(50) = 250, so 250 15.811σ = = .  

Using a continuity correction from [225, 275] to [224.5, 275.5], P(225 ≤ Y ≤ 275) ≈ 
224.5 250 275.5 250

15.811 15.811
P Z− − ≤ ≤ 
 

 = P(–1.61 ≤ Z ≤ 1.61) = .8926. 
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c. Using software, part (a) = 0

3

50
7

5 !
50y

y

e
y=

−

∑  = .9862 and part (b) = 
250

275

225

2
!
50y

y

e
y=

−

∑ = .8934.  Both of the 

approximations in (a) and (b) are correct to 2 decimal places. 
 

 
56.  

a. Let X = the number of erroneous bits out of 1000, so X ~ Bin(1000, .10). If we approximate X by a 
normal rv with μ = np = 100 and σ2 = npq = 90, then with a continuity correction P(X ≤ 125) = P(X ≤ 

125.5) ≈ 125.5 100
90

P Z − 
 
 

≤ = P(Z ≤ 2.69) = Φ(2.69) = .9964. 

 
b. Let Y = the number of errors in the second transmission, so Y ~ Bin(1000, .10) and is independent of X. 

To find P(|X – Y| ≤ 50), use the facts that E[X – Y] = 100 – 100 = 0 and V(X – Y) = V(X) + V(Y) = 90 + 

90 = 180. So, using a normal approximation to both binomial rvs, P(|X – Y| ≤ 50) ≈ 50| |
180

P Z 
 
 

≤ = 

P(| Z | ≤ 3.73) ≈ 1. 
 
 
57. With the parameters provided, E(X) = αβ = 100 and V(X) = αβ2 = 200. Using a normal approximation,    

P(X ≤ 125) ≈ 125 100
200

P Z − ≤ 
 

= P(Z ≤ 1.77) = .9616. 

Section 5.5 
 
58.  

a. E(27X1 + 125X2 + 512X3) = 27E(X1) + 125E(X2) + 512E(X3)  
= 27(200) + 125(250) + 512(100) = 87,850. 
V(27X1 + 125X2 + 512X3) = 272 V(X1) + 1252 V(X2) + 5122 V(X3) 
= 272 (10)2 + 1252 (12)2 + 5122 (8)2 = 19,100,116. 

 
b. The expected value is still correct, but the variance is not because the covariances now also contribute 

to the variance. 
 
 
59.  

a. E(X1 + X2 + X3) = 180, V(X1 + X2 + X3) = 45, SD(X1 + X2 + X3) = 45 = 6.708. 

P(X1 + X2 + X3 ≤ 200) = 200 180 ( 2.98) .9986
6.708

P Z P Z− ≤ = ≤ = 
 

. 

P(150 ≤ X1 + X2 + X3 ≤ 200) = ( 4.47 2.98) .9986.P Z− ≤ ≤ ≈  
  

b. 60Xµ µ= = and 15 2.236
3

X
X n

σσ = = = , so 

55 60( 55) ( 2.236) .9875
2.236

P X P Z P Z− ≥ = ≥ = ≥ − = 
 

 and 

( )(58 62) .89 .89 .6266.P X P Z≤ ≤ = − ≤ ≤ =  
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c. E(X1 – .5X2 – .5X3) = μ – .5 μ – .5 μ = 0, while  
V(X1 – .5X2 –.5X3) = 2 2 2

1 2 3.25 .25 22.5σ σ σ+ + = ⇒ SD(X1 – .5X2 –.5X3) = 4.7434. Thus, 

P(–10 ≤ X1 – .5X2 – .5X3 ≤ 5) = 10 0 5 0
4.7434 4.7434

P Z− − − ≤ ≤ 
 

( )2.11 1.05P Z= − ≤ ≤  =  .8531 – .0174 = 

.8357. 
 

d. E(X1 + X2 + X3) = 150,  V(X1 + X2 + X3) = 36 ⇒ SD(X1 + X2 + X3) = 6, so 

P(X1 + X2 + X3 ≤ 200) = 160 150 ( 1.67) .9525.
6

P Z P Z− ≤ = ≤ = 
 

 

Next, we want P(X1 + X2 ≥ 2X3), or, written another way, P(X1 + X2 – 2X3 ≥ 0).  
E(X1 + X2 – 2X3) = 40 + 50 – 2(60) = –30 and V(X1 + X2 – 2X3) = 2 2 2

1 2 34 78σ σ σ+ + = ⇒  
SD(X1 + X2 – 2X3)  = 8.832, so  

P( X1 + X2 – 2X3 ≥ 0) = 0 ( 30) ( 3.40) .0003
8.832

P Z P Z− − ≥ = ≥ = 
 

. 

 
60. The fuel efficiency of the first two cars have parameters µ = 22 and σ = 1.2, while the last three cars have 

parameters µ = 26 and σ = 1.5. Since the Xis are normally distributed,  Y is also normally distributed, with 
1 1 1 1 1 1 1 1 1 1

1 22 2 3 3 3 2 2 3 34 5 33 (22) (26) (26) (22) 62 )(Yµ µ µ µµ µ= + − − − = + − − −  = 22 – 26 = –4 mpg, and 
2 2 2 2 2 2

1 2 3 4 53 3 3 9 9 9
2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1

2 2 4 4) ) ) ) ) (1.2) (1.( ( ( ( 2) (1.5) (1.5) (1.( 5)Yσ σ σ σ σ σ= + + − + − + − = + + + +  = 1.47 
⇒ σY = 1.212 mpg. 

Thus, P(Y ≥ 0) = 1 – 0 ( 4)
1.212
− − Φ 

 
 = 1 – Φ(3.30) = 1 – .9995 = .0005. Similarly,   

P(Y > –2) = 1 – 2 ( 4)
1.212

− − − Φ 
 

 = 1 – Φ(1.65) = 1 – .9505 = .0495. 

 
61.  

a. The marginal pmfs of X and Y are given in the solution to Exercise 7, from which E(X) = 2.8,           
E(Y) = .7, V(X) = 1.66, and V(Y) = .61.  Thus, E(X + Y) = E(X) + E(Y) = 3.5,  
V(X + Y) = V(X) + V(Y) = 2.27, and the standard deviation of X + Y is 1.51. 

 
b. E(3X + 10Y) = 3E(X) + 10E(Y) = 15.4, V(3X + 10Y) = 9V(X) + 100V(Y) = 75.94, and the standard 

deviation of revenue is 8.71. 
 
 
62. E(X1 + X2 + X3) = E(X1) + E(X2) + E(X3) = 15 + 30 + 20 = 65 min, and  

 V(X1 + X2 + X3) = 12 + 22 + 1.52 = 7.25 ⇒ SD(X1 + X2 + X3) = 2.6926 min.  

 Thus, P(X1 + X2 + X3 ≤ 60) = 60 65 ( 1.86) .0314.
2.6926

P Z P Z− ≤ = ≤ − = 
 

 

 
63.  

a. E(X1) = 1.70, E(X2) = 1.55, E(X1X2) = 
1 2

1 2 1 2( , ) 3.33
x x

x x p x x ==∑∑  , so  

Cov(X1, X2) = E(X1X2) – E(X1) E(X2) = 3.33 – 2.635 = .695. 
 
b. V(X1 + X2) = V(X1) + V(X2) + 2Cov(X1, X2) = 1.59 + 1.0875 + 2(.695) = 4.0675. This is much larger 

than V(X1) + V(X2), since the two variables are positively correlated. 
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64. Let X1, …, X5 denote morning times and X6, …, X10 denote evening times. 
a. E(X1 + …+ X10) = E(X1) + … + E(X10) = 5E(X1) + 5E(X6) = 5(4) + 5(5) = 45 min. 

 

b. V(X1 + …+ X10) = V(X1) + … + V(X10) = 5V(X1) + 5V(X6) 
64 100 8205 68.33
12 12 12
 = + = =  

. 

 
c. E(X1 – X6) = E(X1) – E(X6) = 4 – 5 = –1 min, while 

V(X1 – X6) = V(X1) + V(X6) = 67.13
12
164

12
100

12
64

==+ . 

 
d. E[(X1 + … + X5) – (X6 + … + X10)] = 5(4) – 5(5) = –5 min, while 

V[(X1 + … + X5) – (X6 + … + X10)] = V(X1 + … + X5) + V(X6 + … + X10) = 68.33, the same variance as 
for the sum in (b). 

 
 
65.  

a. ;0)( =−YXE 0032.
2525

)(
22
=+=−

σσYXV  ⇒ .0032 .0566X Yσ − ==  

( ) ( ) 9232.77.177.11.1. =≤≤−=≤−≤−⇒ ZPYXP . 
 

b. 0022222.
3636

)(
22
=+=−

σσYXV ⇒ 0471.=−YXσ  

( ) ( ) 9660.12.212.21.1. =≤≤−≈≤−≤−⇒ ZPYXP . The normal curve calculations are still justified 
here, even though the populations are not normal, by the Central Limit Theorem (36 is a sufficiently 
“large” sample size). 

 
 
66.  

a. With M = 5X1 + 10X2, E(M) = 5(2) + 10(4) = 50,  
V(M) = 52 (.5)2 + 102 (1)2 = 106.25 and σM = 10.308. 

 

b. P(75 < M) = 0075.)43.2(
308.10

5075
=<=






 <

− ZPZP . 

 
c. M = A1X1 + A2X2 with the Ai and Xi all independent, so  

E(M) = E(A1X1) + E(A2X2) = E(A1)E(X1) + E(A2)E(X2) = 50. 
 

d. V(M) = E(M2) – [E(M)]2.   Recall that for any rv Y, E(Y2) = V(Y) + [E(Y)]2.   
Thus, E(M2) = ( )2

2
2
22211

2
1

2
1 2 XAXAXAXAE ++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
2

2
22211

2
1

2
1 2 XEAEXEAEXEAEXEAE ++=  (by independence) 

= (.25 + 25)(.25 + 4) + 2(5)(2)(10)(4) + (.25 + 100)(1 + 16) = 2611.5625, so  
V(M) = 2611.5625 – (50)2 = 111.5625. 

 
e. E(M) = 50 still, but now Cov(X1, X2) = (.5)(.5)(1.0) = .25, so 

2 2
1 1 1 2 1 2 2 2( ) ( ) 2 Cov( , ) ( )V M a V X a a X X a V X= + + = 6.25 + 2(5)(10)(.25) + 100 = 131.25. 
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67. Letting X1, X2, and X3 denote the lengths of the three pieces, the total length is  
X1 + X2 – X3.   This has a normal distribution with mean value 20 + 15 – 1 = 34 and variance .25 + .16 + .01 
= .42 from which the standard deviation is .6481.  Standardizing gives  
P(34.5 ≤ X1 + X2 - X3 ≤ 35) = P(.77 ≤ Z ≤ 1.54) = .1588. 

 
 
68. Let X1 and X2 denote the (constant) speeds of the two planes. 

a. After two hours, the planes have traveled 2X1 km and 2X2 km, respectively, so the second will not have 
caught the first if 2X1 + 10 > 2X2, i.e. if X2 – X1 < 5.  
X2 – X1 has a mean 500 – 520 = –20, variance 100 + 100 = 200, and standard deviation 14.14.  Thus, 

2 1
5 ( 20)( 5) ( 1.77) .9616.

14.14
P X X P Z P Z− − − < = < = < = 

 
 

 
b. After two hours, #1 will be 10 + 2X1 km from where #2 started, whereas #2 will be 2X2 from where it 

started.  Thus, the separation distance will be at most 10 if   
|2X2 – 10 – 2X1| ≤ 10, i.e. –10 ≤ 2X2 – 10 – 2X1 ≤ 10 or 0 ≤ X2 – X1 ≤ 10.  The corresponding 
probability is P(0 ≤ X2 – X1 ≤ 10) = P(1.41 ≤ Z ≤ 2.12) = .9830 – .9207 = .0623. 

 
 
69.  

a. E(X1 + X2 + X3) = 800 + 1000 + 600 = 2400. 
 
b. Assuming independence of X1, X2 , X3, V(X1 + X2 + X3) = (16)2 + (25)2 + (18)2 = 1205. 

 
c. E(X1 + X2 + X3) =  2400 as before, but now V(X1 + X2 + X3)  

= V(X1) + V(X2) + V(X3) + 2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X2, X3) = 1745, from which the 
standard deviation is 41.77. 

 
 
70.  

a. ( )
2

,1
iE Y =  so 

1 1

1
2

( 1)( ) ( ) .
4

n n

i
i i

n nE W i E Y i
= =

+
= ⋅ = =∑ ∑  

 

b. ( )
4

,1
iV Y =  so 2 2

1 1

( 1)(2 1)( ) ( )
44

.
2

1n n

i
i i

n n nV W i V Y i
= =

+ +
= ⋅ = =∑ ∑  

 
 
71.  

a. 
12

1 1 2 2 1 1 2 20
72 ,M a X a X W xdx a X a X W= + + = + +∫  so 

E(M) = (5)(2) + (10)(4) + (72)(1.5) = 158 and 
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 22 5 .5 10 1 72 .25 430.25Mσ = + + = ⇒ 20.74.Mσ =  

 

b. 200 158( 200) ( 2.03) .9788.
20.74

P M P Z P Z− ≤ = ≤ = ≤ = 
 
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72. The total elapsed time between leaving and returning is To = X1 + X2 + X3 + X4, with ( ) 40,oE T =  
2 30,
oTσ = 5.477

oTσ = . To  is normally distributed, and the desired value t is the 99th percentile of the lapsed 
time distribution added to 10 A.M.:   
10:00 + [40 + 2.33(5.477)] = 10:52.76 A.M. 

 
 
73.  

a. Both are approximately normal by the Central Limit Theorem. 
 
b. The difference of two rvs is just an example of a linear combination, and a linear combination of 

normal rvs has a normal distribution, so X Y−  has approximately a normal distribution with 5X Yµ − =  

and 
2 28 6 1.621

40 35X Yσ − = + = . 

 

c. ( ) 1 5 1 51 1
1.6213 1.6213

P X Y P Z− − − − ≤ − ≤ ≈ ≤ ≤ 
 

( 3.70 2.47) .0068.P Z= − ≤ ≤ − ≈  

 

d. ( ) 10 510 ( 3.08) .0010.
1.6213

P X Y P Z P Z− − ≥ ≈ ≥ = ≥ = 
 

  This probability is quite small, so such an 

occurrence is unlikely if 1 2 5µ µ− = , and we would thus doubt this claim. 
 
 
74. X is approximately normal with 1 (50)(.7) 35µ = =  and 2

1 (50)(.7)(.3) 10.5σ = = , as is Y with 2 30µ =  and 
2
2 12σ = .  Thus 5X Yµ − =  and 2 2 2 22.5X YX Y σσ σ− + == , so  

( ) 10 05 5 ( 2.11 0) .4826
4.74 4.74

P X Y P Z P Z− − ≤ − ≤ ≈ ≤ ≤ = − ≤ ≤ = 
 

. 

 
Supplementary Exercises 
 
75.  

a. pX(x) is obtained by adding joint probabilities across the row labeled x, resulting in pX(x) = .2, .5, .3 for 
x = 12, 15, 20 respectively.  Similarly, from column sums py(y) = .1, .35, .55 for y = 12, 15, 20 
respectively. 

 
b. P(X ≤ 15 and Y ≤ 15) = p(12,12) + p(12,15) + p(15,12) + p(15,15) = .25. 
 
c. pX(12) ⋅ pY(12) = (.2)(.1) ≠ .05 = p(12,12), so X and Y are not independent. (Almost any other (x, y) pair 

yields the same conclusion). 
 
d. ( ) ( ) ( , ) 33.35E X Y x y p x y+ = + =∑∑  (or =  E(X) + E(Y) = 33.35). 
 
e. ( ) ( , ) 3.85E X Y x y p x y =− = − =∑∑  . 
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76. The roll-up procedure is not valid for the 75th percentile unless σ1 = 0 and/or σ2 = 0, as described below. 
Sum of percentiles: 1 1 2 2 1 2 1 2( ) ( ) ( )z z zµ σ µ σ µ µ σ σ+ + + = + + +  

Percentile of sums: 2
11
2

22( ) zµ µ σ σ+ + +  

These are equal when z = 0 (i.e. for the median) or in the unusual case when 
1 2

2 2
1 2σ σ σ σ+ = + , which 

happens when σ1 = 0 and/or σ2 = 0. 
 
77.  

a. 
20 30 30 30

0 20 20 0
1 ( , )

x x

x
f x y dxdy kxydydx kxydydx

∞ ∞ − −

−∞ −∞ −
= = +∫ ∫ ∫ ∫ ∫ ∫

81,250 3
3 81,250

k k= ⋅ ⇒ = . 

 
 
 
 
 
 
 

 

b. 

30 2

20
30 2 31

20

(250 10 ) 0 20

30
( )

(450 30 ) 20

x

x
X x

kxydy k x x
f x

kxydy k x x x

x

x

−

−

−

≤ ≤

≤

 = −= 
 = − + ≤

∫
∫

 

 By symmetry, fY(y) is obtained by substituting y for x in fX(x).   
Since fX(25) > 0 and fY(25) > 0, but f(25, 25) = 0 , fX(x) ⋅ fY(y) ≠ f(x,y) for all (x, y), so X and Y are not 
independent. 

 

c. 
20 25 25 25

0 20 20 0
( 25)

x x

x
P X Y kxydydx kxydydx

− −

−
+ ≤ = +∫ ∫ ∫ ∫

3 230,625 .355.
81,250 24

= ⋅ =  

 
 

d. ( ){ 20 2

0
( ) ( ) ( ) 2 ( ) 2 250 10E X Y E X E Y E X x k x x dx+ = + = = ⋅ −∫  

( ) }30 2 31
220

450 30x k x x x dx+ ⋅ − +∫ 2 (351,666.67) 25.969.k= =  

 
e. 

20 30 2 2

0 20
( ) ( , )

x

x
E XY xy f x y dxdy kx y dydx

∞ ∞ −

−∞ −∞ −
= ⋅ =∫ ∫ ∫ ∫  

30 30 2 2

20 0

33,250,000 136.4103
3 3

x kkx y dydx
−

+ = ⋅ =∫ ∫ , so 

 Cov(X, Y) = 136.4103 – (12.9845)2 = –32.19.  

E(X2) = E(Y2) = 204.6154, so 2 2 2204.6154 (12.9845) 36.0182X Yσ σ= = − = and 32.19 .894.
36.0182

ρ −
= = −  

 
f. V(X + Y) = V(X) + V(Y) + 2Cov(X, Y) = 7.66. 

 

30=+ yx

20=+ yx
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78. As suggested in the hint, for non-negative integers x and y write  

P(X(t) = x and Y(t) = y) = P(X(t) = x and W = x + y) = P(W = x + y) · P(X(t) = x | W = x + y). 

The first probability is, by assumption, Poisson: P(W = x + y) =
( )!

x ye
x y

µµ +−

+
 . As for the second probability, 

conditional on W = w, each of these w loose particles has been released by time t with probability G(t) and 
not yet released with probability 1 – G(t), independent of the other particles. Thus X(t), the number of loose 
particles not yet released by time t, has a binomial distribution with parameters n = w and p = 1 – G(t) 
conditional on W = w.  
Calculate this binomial probability and multiply by the Poisson answer above: 

P(W = x + y) · P(X(t) = x | W = x + y) = (1 ( ( )))
( )!

x y
x y x y

G t
x

e G t
x y

µµ +−  
⋅ − +  

+
= (1 (( ))

! !
)

y
x y

x

Ge G t
x y

t
µµ− +

− . 

Then, to find the (marginal) distribution of X(t), eliminate the variable y: 

0 0

[1 ( )]
( )

0

( ) ( ) ( )

[1 ( )]) (

(1 ( )) (1 ( ))
! ! ! !

( ( )) [1 ( )( (]) [1 ( )]
! ! !

)
!

x y x y

x

x y x y
X

y y

G t
G t

x

y

y x

x G t Ge ep G t G t

G t G t G t G t

t
x y x y

e e ee
x y x x

µ µ

µ µ µ
µ

µ µ µ

µ µ µ µ

− −∞ ∞

= =

− − − −∞

=

+

= =

−

− −

⋅ =
− −

= =

∑ ∑

∑
 

This is precisely the Poisson pmf with parameter µ[1 – G(t)], as claimed. 
 
79. ( ) 500 900 2000 3400.E X Y Z+ + = + + =  

2 2 250 100 180( ) 123.014
365 365 365

V X Y Z+ + = + + = ⇒ ( )SD X Y Z+ + = 11.09. 

( 3500) ( 9.0) 1.P X Y Z P Z+ + ≤ = ≤ ≈  
 
80.  

a. Let X1, …, X12 denote the weights for the business-class passengers and Y1, …, Y50 denote the tourist-
class weights.  Then T = total weight = X1 + … + X12 + Y1 + … + Y50 = X + Y. 
E(X) = 12E(X1) = 12(30) = 360; V(X) = 12V(X1) = 12(36) = 432. 
E(Y) = 50E(Y1) = 50(40) = 2000; V(Y) = 50V(Y1) = 50(100) = 5000. 
Thus E(T) = E(X) + E(Y) = 360 + 2000 = 2360, 
and V(T) = V(X) + V(Y) = 432 + 5000 = 5432 ⇒ SD(T) = 73.7021. 

 

b. ( )2500 2360( 2500) 1.90 .9713.
73.7021

P T P Z P Z− ≤ = ≤ = ≤ = 
 

 

 
81.  

a. E(N) ⋅ µ = (10)(40) = 400 minutes. 
 
b. We expect 20 components to come in for repair during a 4 hour period,  

so E(N) ⋅ µ = (20)(3.5) = 70. 
 
 
82. X ~ Bin(200, .45) and Y ~ Bin(300, .6).  Because both ns are large, both X and Y are approximately normal, 

so X + Y is approximately normal with mean (200)(.45) + (300)(.6) = 270, variance 200(.45)(.55) + 
300(.6)(.4) = 121.40, and standard deviation 11.02.  Thus,  

P(X + Y ≥ 250) ( )249.5 270 1.86 .9686.
11.02

P Z P Z− = ≥ = ≥ − = 
 
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83. 0.95 = .02 .02( .02 .02)
.1/ .1/

P X P Z
n n

µ µ − − ≤ ≤ + = ≤ ≤ 
 

= ( ).2 .2P n Z n− ≤ ≤  ; since 

( )1.96 1.96 .95P Z− ≤ ≤ = , .2 1.96 97.n n= ⇒ =  The Central Limit Theorem justifies our use of the 
normal distribution here. 

 
 
84. I have 192 oz.  The amount which I would consume if there were no limit is To = X1 + …+ X14 where each 

Xi is normally distributed with µ = 13 and σ = 2.  Thus To is normal with 182
oTµ =  and 7.483

oTσ = , so 
P(To < 192) = P(Z < 1.34) = .9099. 

 
 
85. The expected value and standard deviation of volume are 87,850 and 4370.37, respectively, so 

100,000 87,850(volume 100,000) ( 2.78) .9973
4370.37

P P Z P Z− ≤ = ≤ = ≤ = 
 

. 

 
86. The student will not be late if X1 + X3 ≤ X2, i.e. if X1 – X2 + X3 ≤ 0.  This linear combination has mean –2, 

variance 4.25, and standard deviation 2.06, so 

1 2 3
0 ( 2)( 0) ( .97) .8340.

2.06
P X X X P Z P Z− − − + ≤ = ≤ = ≤ = 

 
 

 
87.  

a. P(12 < X < 15) = 12 13 15 13
4 4

P Z− − < < 
 

 = P(–0.25 < Z < 0.5) = .6915 – .4013 = .2092. 

 
b. Since individual times are normally distributed, X  is also normal, with the same mean µ = 13 but with 

standard deviation / 4 / 16X nσ σ == = 1. Thus,  

12 13 15 13(12 1
1

5)
1

P PX Z− − < < <= 


< 


 = P(–1 < Z < 2) = .9772 – .1587 = .8185. 

 
c. The mean is µ = 13. A sample mean X based on n = 16 observation is likely to be closer to the true 

mean than is a single observation X. That’s because both are “centered” at µ, but the decreased 
variability in X gives it less ability to vary significantly from µ. 
 

d. P( X > 20) = 1 – Φ(7) ≈ 1 – 1 = 0. 
 

88. Follow the hint, and apply the multiplication rule: 
1 2 3 1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

, , ) ( , , ) ( , , )
( , , ) ( )

( ,
|

x x P X x X x X x P X x X x X x
P X x X x X x P N n

p x N n
N n

= = = = = = = =
= = ⋅=

=
= = =

  

Conditional on N = n, the X’s follow a multinomial distribution with count n and probabilities (.5, .3, .2). 
Also, N is Poisson(µ) by assumption. Write out the two terms, and then re-arrange so they match the 
Poisson distributions suggested in the problem: 

3 1 2 31 2
31 2

1 2 3

1 2 3
1 2 3 1 2 3

.5 . .

2 3

3 2

1

! (.5) (.3) (.2)(
!

(.5 (.3

, , ) (.5) (.3) (.2)
! ! ! ! ! !

) ) )
! !

(.2
!

xx x xx xn
xx x

xx x

e ep nx x
x x

x
n

e e e

x x

x x x

x x

µ µ

µ µ µ

µ µ

µ µ µ

+ +− −

− − −

⋅
⋅ ==

= ⋅ ⋅
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Notice that this last step works because .5 .3 .2e e e eµ µ µ µ− − − −= . Looking now at the joint pmf, we observe that 
it factors into separate functions of x1, x2, and x3. This implies that the rvs X1, X2, and X3 are independent; 
moreover, we recognize these factors (i.e., their marginal pmfs) as Poisson pmfs with parameters .5µ, .3µ, 
and .2µ, respectively, as claimed.  
 

89.  
a. 2 2 2 2 2 2( ) 2 Cov( , ) 2 .X Y X X Y YV aX Y a a X Y a aσ σ σ σ σ ρ σ+ = + + = + +  

Substituting Y

X

a σ
σ

=  yields ( )2 2 2 22 2 1 0.Y Y Y Yσ σ ρ σ σ ρ+ + = + ≥  This implies (1 + ρ) ≥ 0, or ρ ≥ –1.  

 
b. The same argument as in a yields ( )22 1 0Yσ ρ− ≥ , from which ρ ≤ 1. 
 
c. Suppose ρ = 1.  Then ( ) ( )22 1 0YV aX Y σ ρ− = − = , which implies that aX – Y is a constant. Solve for Y 

and Y = aX – (constant), which is of the form aX + b. 
 
 
90. 

1 12 2

0 0
( ) ( ) ( , ) .E X Y t x y t f x y dxdy+ − = + − ⋅∫ ∫   To find the minimizing value of t, take the derivative with 

respect to t and equate it to 0: 
1 1 1 1 1 1

0 0 0 0 0 0
0 2 ( )( 1) ( , ) 0 ( ) ( , ) ( , )x y t f x y x y f x y dxdy t f x y dxdy= + − − = ⇒ + = ⋅∫ ∫ ∫ ∫ ∫ ∫ . The left-hand side is 

E(X + Y), while the right-hand side is t · 1 = t. 
So, the best prediction is t = E(X + Y) = the individual’s expected score = 1.167. 

 
 
91.  

a. With Y = X1 + X2, ( ) ( ) ( )
1 2 1 2

1

11 21

1 1
2 2 2

2 2 1/2 /20 0
1 2

1 1 .
2 / 2 2 / 2

x xy y x

YF y x x e dx dx
ν ν

ν νν ν

+
− − −− = ⋅ ⋅ Γ Γ 

∫ ∫   But the 

inner integral can be shown to be equal to ( ) ( )
( )1 2

1 2

[ /2] 1 /2
/2

1 2

1
2 ( ) / 2

yy eν ν
ν ν ν ν

+ − −
+ Γ +

, from which the result 

follows. 
 
b. By a, 2 2

1 2Z Z+  is chi-squared with ν = 2, so ( )2 2 2
1 2 3Z Z Z+ +  is chi-squared with ν = 3, etc., until 

2 2
1 ... nZ Z+ +  is chi-squared with ν = n. 

 

c. iX µ
σ
−  is standard normal, so 

2
iX µ
σ
− 

  
is chi-squared with ν = 1, so the sum is chi-squared with 

parameter ν = n. 
 
 
92.  

a. Cov(X, Y + Z) = E[X(Y + Z)] – E(X) ⋅ E(Y + Z)  
= E(XY) + E(XZ) – E(X) ⋅ E(Y) – E(X) ⋅ E(Z)  
= E(XY) – E(X) ⋅ E(Y) + E(XZ) – E(X) ⋅ E(Z)  
= Cov(X, Y) + Cov(X, Z). 

 
b. Cov(X1 + X2 , Y1 +  Y2) = Cov(X1 , Y1) + Cov(X1 ,Y2) + Cov(X2 , Y1) + Cov(X2 ,Y2)  by applying (a) 

twice, which equals 16. 



Chapter 5:  Joint Probability Distributions and Random Samples 

 204 

93.  
a. 2 2

1 1 2 2( ) ( ) ( ) ( )W EV X V W E V W E V Xσ σ= + = + = + =  and 1 2Cov( , )X X = 

11 2 2 21Cov( , ) Cov( , ) Cov( , ) Cov( , ) Cov( , )W E W E W W W E E W E E+ + = + + + =  
Cov(W, W) + 0 + 0 + 0 = V(W) = 2

Wσ . 

Thus, 
2 2

2 22 2 2 2
.W W

W EW E W E

σ σρ
σ σσ σ σ σ

= =
++ ⋅ +

 

 

b. 1 .9999.
1 .0001

ρ = =
+

 

 
 
94.  

a. Cov(X, Y) = Cov(A+D, B+E) = Cov(A, B) + Cov(D, B) + Cov(A, E) + Cov(D, E) = Cov(A, B) + 0 + 0 
+ 0 = Cov(A, B). Thus 

2 2 2 2

Cov( , )Corr( , )
A D B E

A BX Y
σ σ σ σ

=
+ ⋅ +

 
2 2 2 2

Cov( , ) A B

A B A D B E

A B σ σ
σ σ σ σ σ σ

= ⋅ ⋅
+ +

 

 The first factor in this expression is Corr(A, B), and (by the result of exercise 91a) the second and third 
factors are the square roots of Corr(X1, X2) and Corr(Y1, Y2), respectively.  Clearly, measurement error 
reduces the correlation, since both square-root factors are between 0 and 1. 

 
b. .8100 .9025 .855⋅ = .  This is disturbing, because measurement error substantially reduces the 

correlation. 
 
 
95. [ ]1 1 1

1 2 3 4 10 15 20( ) ( , , , ) 120 26.E Y h µ µ µ µ= = + + =


 

The partial derivatives of 1 2 3 4( , , , )h µ µ µ µ with respect to x1, x2, x3, and x4 are 4
2
1

,x
x

−  4
2
2

,x
x

−  4
2
3

,x
x

−  and 

1 2 3

1 1 1
x x x
+ + , respectively.  Substituting x1 = 10, x2 = 15, x3 = 20, and x4 = 120 gives –1.2, –.5333, –.3000, 

and .2167, respectively, so V(Y) = (1)(–1.2)2 + (1)(–.5333)2 + (1.5)(–.3000)2 + (4.0)(.2167)2 = 2.6783, and 
the approximate sd of Y is 1.64. 

 
 

96. The four second order partials are 4
3
1

2 ,x
x

4
3
2

2 ,x
x

4
3
3

2 ,x
x

and 0 respectively.  Substitution gives E(Y) = 26 + 

.1200 + .0356 + .0338 = 26.1894. 
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97. Since X and Y are standard normal, each has mean 0 and variance 1. 

a. Cov(X, U) = Cov(X, .6X + .8Y) = .6Cov(X, X) + .8Cov(X, Y) = .6V(X) + .8(0) = .6(1) = .6.  
The covariance of X and Y is zero because X and Y are independent.  
Also, V(U) = V(.6X + .8Y) = (.6)2V(X) + (.8)2V(Y) = (.36)(1) + (.64)(1) = 1. Therefore, 

Corr(X,U) = 
11

6.),(Cov
=

UX

UX
σσ

 = .6, the coefficient on X. 

 
b. Based on part a, for any specified ρ we want U = ρX + bY, where the coefficient b on Y has the feature 

that ρ2 + b2 = 1 (so that the variance of U equals 1). One possible option for b is b = 21 ρ− , from 

which U = ρX + 21 ρ− Y. 
 
 

98. Let Y denote the maximum bid. Following the hint, the cdf of Y is 
FY(y) = P(Y ≤ y) = P(Xi ≤ y for i = 1, …, n) = P(X1 ≤ y) × … × P(Xn ≤ y) by independence 
Each Xi has the uniform cdf on [100, 200]: FX(x) = (x – 100)/(200 – 100) = (x – 100)/100. Substituting, 
FY(y) = (y – 100)/100 × … × (y – 100)/100 = (y – 100)n/100n. To find the pdf, differentiate: 
fY(y) = n(y – 100)n–1/100n. This pdf is valid on [100, 200], since Y must lie in this interval. Finally, to find 
the expected amount earned, E(Y), evaluate an integral: 

200 200 200

100 100 100

1

1
1

1

1
1

00

0

100

0

( 100)( ) ( 100)
100

( 100)      substitute 10

( )
100

100
100 100100

100 100 1
2 110

0

( 1

0

0

1

0 )

n
n

Y n n

n
n

n n
n n

n n

n y nE Y y f y y y

n u u u y

n

y dy dy dy

du

du
n n

n
n

nu u

−
−

−

+
−  

+ + 
+

=

−
= ⋅ = ⋅ = −

= + = −

=

⋅
+

+ =

∫ ∫ ∫

∫

∫
  

Notice that when n = 1 (single bidder), E(Y) = 150, the expected value of that single bid on [100, 200]. As n 
gets large, the fraction on the right converges to 2, and so E(Y) gets ever closer to 200, the theoretical 
maximum possible bid. 
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CHAPTER 6 
 

Section 6.1 
 
1.  

a. We use the sample mean, x , to estimate the population mean μ.  219.80ˆ 8.1407.
27

ixx
n

µ Σ
= = = =  

 
b. We use the sample median, 7.7x = (the middle observation when arranged in ascending order). 
 

c. We use the sample standard deviation, 
( )2219.8

2 271860.94 1.660.
26

s s −
= = =  

 

d. With “success” = observation greater than 10, x = # of successes = 4, and 4ˆ .1481.
27

xp
n

= = =  

 

e. We use the sample (std dev)/(mean), or 1.660 .2039.
8.1407

s
x
= =  

 
2.  

a. A sensible point estimate of the population mean µ is the sample mean, x = 49.95 mg/dl. 
 
b. Of interest is the population median, µ . The logical point estimate is the sample median, x , which is 

the average of the 10th and 11th ordered values: x = 47.5 mg/dl. 
 

c. The point estimate of the population sd, σ, is the sample standard deviation, s = 16.81 mg/dl. 
 

d. The natural estimate of p = P(X ≥ 60) is the sample proportion of HDL observations that are at least 
60. In this sample of n = 20 observations, 4 are 60 or higher, so the point estimate is p̂ = 4/20 = .2. 

 
3.  

a. We use the sample mean, 1.3481.x =  
 
b. Because we assume normality, the mean = median, so we also use the sample mean 1.3481x = .  We 

could also easily use the sample median. 
 
c. We use the 90th percentile of the sample: ( )( )ˆ ˆ(1.28) 1.28 1.3481 1.28 .3385 1.7814x sµ σ+ = + = + = . 
 
d. Since we can assume normality, 

( ) ( )1.5 1.5 1.34811.5 .45 .6736.
.3385

xP X P Z P Z P Z
s
− −   < ≈ < = < = < =   

   
 

 

e. The estimated standard error of ˆ .3385 .0846.
16

sx
n n
σ

= = = =  
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4.  
a. ( ) ( ) ( ) 1 2E X Y E X E Y µ µ− = − = − ; 8.141 8.575 .434x y− = − = − . 
 

b. ( ) ( ) ( )
2 2

2 2 1 2

1 2
X YV X Y V X V Y

n n
σ σσ σ− = + = + = +  ( )

2 2
1 2

1 2
X Y V X Y

n n
σ σσ − = − = + . The estimate 

would be 
2 2 2 2
1 2

1 2

1.66 2.104 .5687
27 20X Y

s ss
n n− = + = + = . 

 

c. 1

2

1.660 .7890.
2.104

s
s
= =  

 
d. ( ) ( ) ( ) 2 2 2 2

1 2 1.66 2.104 7.1824.V X Y V X V Y σ σ− = + = + = + =  
 

5. Let θ = the total audited value. Three potential estimators of θ are XN=1̂θ , DNT −=2θ̂ , and 
Y
XT ⋅=3θ̂ . 

From the data, y = 374.6, x = 340.6, and d = 34.0. Knowing N = 5,000 and T = 1,761,300, the three 

corresponding estimates are 000,703,1)6.340)(000,5(1̂ ==θ , 300,591,1)0.34)(000,5(300,761,1ˆ
2 =−=θ , 

and 281.438,601,1
6.374
6.340300,761,1ˆ

3 =





=θ . 

 
 
6.  

a. Let yi = ln(xi) for i = 1, .., 40.  Using software, the sample mean and sample sd of the yis are y = 4.430 
and sy = 1.515. Using the sample mean and sample sd to estimate μ and σ, respectively, gives µ̂ = 
4.430 and σ̂ = 1.515 (whence 2 2ˆ ysσ = = 2.295). 

 

b. 
2

( ) exp
2

E X σµ
 

≡ + 
 

.  It is natural to estimate E(X) by using µ̂  and 2σ̂ in place of μ and σ2 in this 

expression:  2.295( ) exp 4.430
2

E X  = +  
= 264.4 µg.  

 
7.  

a. 1206ˆ 120.6.
10

ix
x

n
µ = = = =∑  

 
b. ˆ 10,000τ = ˆ 1,206,000.µ =  
 
c. 8 of 10 houses in the sample used at least 100 therms (the “successes”), so 8

10ˆ .80.p = =  
 
d. The ordered sample values are 89, 99, 103, 109, 118, 122, 125, 138, 147, 156,  from which the two 

middle values are 118 and 122, so 118 122 120.0.
2

ˆ xµ +
= = =   
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8.  

a. With p denoting the true proportion of non-defective components, 80 12ˆ .85.
80

p −
= =  

 

b. P(system works) = p2 , so an estimate of this probability is 
2

2 68ˆ .723.
80

p  = = 
 

 

 
9.  

a. ( ) ( ),E X E Xµ= = so X  is an unbiased estimator for the Poisson parameter μ. Since n = 150, 
(0)(18) (1)(37) ... (7)(1) 317 2.11

150
ˆ

150
ix

n
xµ + +

=
+

=
Σ

== = . 

 

b. X n n
σ

µσ
= = , so the estimated standard error is 2.11 .119

150
ˆ
n
µ
= = . 

 
 
10.  

a. The hint tells us that 2 2) ) [ (( ( )]X X EV XE = + . We know that )(E X µ= and ( )SD X
n
σ

= , so 

2 2
2 2 2) [( ]E

n
X

n
σ σµ µ = = +  +

 
. Since 2 2)(E X µ≠ , we’ve discovered that 2X  is not an unbiased 

estimator of 2µ !  

In fact, the bias equals 
2

2 2)(
n

E X σµ =− > 0, so 2X is biased high.  It will tend to overestimate the 

true value of 2µ . 
b. By linearity of expectation, 2 2 2 2) ( ) ( )(X kS E X kE SE − = − . The author proves in Section 6.1 that 

2 2)(E S σ= , so 
2

2 2 2 2( ) ( )E X kE S k
n
σ µ σ− = + − .  

The goal is to find k so that 2 2 2( )X kSE µ− = . That requires 
2

2 0k
n
σ σ− = , or 1k

n
= . 

 
 
11.  

a. ( ) ( ) 2122
2

11
1

2
2

1
12

2

1

1 )(1)(111 pppn
n

pn
n

XE
n

XE
nn

X
n
X

E −=−=−=







− . 

 

b. 
2 2

1 2 1 2
1 2

1 2 1 2 1 2

1 1( ) ( )X X X XV V V V X V X
n n n n n n

         
− = + = +         

         
=

( ) ( ) ,11

2

22

1

11
2222

2
1112

1 n
qp

n
qpqpn

n
qpn

n
+=+  and the standard error is the square root of this quantity. 

 

c. With 
1

1
1ˆ

n
xp = , 11 ˆ1ˆ pq −= , 

2

2
2ˆ

n
x

p = , 22 ˆ1ˆ pq −= ,  the estimated standard error  is 
2

22

1

11 ˆˆˆˆ
n

qp
n
qp

+ . 
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d. ( ) 245.880.635.
200
176

200
127ˆˆ 21 −=−=−=− pp  

 

e. 041.
200

)120)(.880(.
200

)365)(.635(.
=+  

 
 

12. ( ) ( ) ( ) ( )2 2
1 1 2 2 1 2 2 2

1 2
1 2 1 2 1 2

1 1 1 1
( ) ( )

2 2 2
n S n S n n

E E S E S
n n n n n n

 − + − − −
= + + − + − + − 

 ( ) ( )1 2 2 2 2

1 2 1 2

1 1
2 2

n n
n n n n

σ σ σ
− −

= + =
+ − + −

. 

 
 

13. ( )
12 31

1
21

1

1( ) 1
4 6 3
x xE X x x dxµ θθ θ

−
−

= ⋅ + = + == ∫ ⇒ θ = 3μ 

⇒ 1ˆ ˆ3 ( ) (3 ) 3 ( ) 3 3 .
3

X E E X E X µθ θ θ θ = ⇒ = = = = = 
 

 

 
 
14.  

a. min(xi) = 202 and max(xi) = 525, so the estimate of the number of planes manufactured is            
max(xi) – min(xi) + 1 = 525 – 202 + 1 = 324. 

 
b. The estimate will equal the true number of planes manufactured iff min(xi) = α and max(xi) = β, i.e., iff 

the smallest serial number in the population and the largest serial number in the population both appear 
in the sample.  The estimator is not unbiased.  This is because max(xi) never overestimates β and will 
usually underestimate it (unless max(xi) = β) , so that E[max(Xi)] < β.   
Similarly, E[min(Xi)] > α, so E[max(Xi) – min(Xi)] < β – α + 1;  The estimate will usually be smaller 
than β – α + 1, and can never exceed it. 

 
 
15.   

a. 2( ) 2E X θ=  implies that 
2

2
XE θ

 
= 

 
.  Consider 

2
ˆ

2
iX

n
θ = ∑ .  Then 

( ) ( )22 2 2ˆ
2 2 2 2

ii E XX nE E
n n n n

θ θθ θ
 

= = = = =  
 

∑∑ ∑ , implying that θ̂  is an unbiased estimator for θ. 

 

b. 2 1490.1058ix =∑ , so 1490.1058ˆ 74.505.
20

θ = =  
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16.  
a. By linearity of expectation, ˆ ) ( (1 ) ) ( ) (1 )( ( )E X Y E E YE Xµ δ δ δ δ= + − = + − . We know that 

)(E X µ= and )(E Y µ= , and we’re told these are the same μ. Therefore, 
ˆ )( (1 )E µ δµ δ µ µ= + − = . That proves µ̂ is unbiased for μ. 

b. Assuming the samples are independent, 2 2ˆ ) ( (1 ) ) ( (( ) 1 ) ( )V X Y V X VV Yµ δ δ δ δ= + − = + − . We know 
the variance of a sample mean, so this continues 

2 2 2 2
2 2 2 2 4ˆ ) ( (1 ) ) ( )( 1 (1 )X YV

m n
V

m
X Y

n
σ σ σ σµ δ δ δ δ δ δ= + − + −=+ − = . To minimize this, take the 

derivative and set it equal to zero: 
2 2ˆ ) 4 42 2(1 )( ( 1)

4
0dV

d
m

mm n n
µ σ σδ δ δ
δ

= + − − =⇒
+

= . 

 
In other words, that’s the weight we should give the X-sample so that the variability in our estimator, 
µ̂ , is minimized. 

 
 
17.  

a. ( )
0

11ˆ( ) 1
1

xr

x

x rrE p p p
xx r

∞

=

+ − −
= ⋅ ⋅ ⋅ − + −  
∑

 ( ) ( ) ( )1 1

0 0

22 !
1 1

!( 2)!
x xr r

x x

x rx r
p p p p p p

xx r

∞ ∞
− −

= =

+ −+ −  
= ⋅ ⋅ − = − −  
∑ ∑

0
( ; 1, )

x
p nb x r p p

∞

=

= − =∑ . 

 

b. For the given sequence, x = 5, so 5 1 4ˆ .444.
5 5 1 9

p −
= = =

+ −
 

 
 
18.  

a. 
2 2) /(2 )2 (1( ; , )

2
xf x e µ σµ σ

πσ
− −= , so 2 1( ; , )

2
f µ µ σ

πσ
=  and 

2 2

2

1 2
4 [[ ( )] 4 2n f n n

πσ π σ
µ

= = ⋅ .  

Since 1
2
π
> , ( ) ( ).V X V X>  

 

b. 1( )f µ
π

= , so 
2 2.467( )

4
V X

n n
π

≈ = . 
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19.  

a. .5 .15 2 .3p pλ λ= + ⇒ = + , so 2 .3p λ= −  and ˆˆ 2 .3 2 .3;Yp
n

λ  = − = − 
 

  the estimate is 

202 .3 .2
80

  − = 
 

. 

 
b. ( ) ( )ˆ ˆˆ( ) 2 .3 2 .3 2 .3E p E E pλ λ λ= − = − = − = , as desired. 

 

c. Here  .7 (.3)(.3),pλ = +  so 10 9
7 70

p λ= −  and 10 9ˆ
7 70

Yp
n

 = − 
 

. 

 
 

Section 6.2 
 
20.  

a. To find the mle of p, we’ll take the derivative of the log-likelihood function 

( ) ( ) ( ) ( )ln 1 ln( ln) ln 1n xxn n
p p x p p

x
p n x

x
−    

− = + + − −    
    

= , set it equal to zero, and solve for p. 

( ) ( ) ( )ln ln( ) ln 1
1

nd x n xx p n x p
xdp p

p
p

   −
+ + − − = −  ′

  
=

−
 = 0 ⇒ x(1 – p) = p(n – x) ⇒ p = x/n, so the 

mle of p is ˆ xp
n

= , which is simply the sample proportion of successes. For n = 20 and x = 3, 3ˆ
20

p = = 

.15. 
 

b. Since X is binomial, E(X) = np, from which ( ) ( ) ( )1 1ˆ XE p E E X np p
n n n

 = = = = 
 

; thus, p̂  is an unbiased 

estimator of p. 
 
c. By the invariance principle, the mle of (1 – p)5 is just (1 – p̂ )5. For n = 20 and x = 3, we have (1 – .15)5 

= .4437.  
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21.  

a. ( ) 11E X β
α

 = ⋅Γ + 
 

 and ( )2 2 2 2( ) [ ( )] 1E X V X E X β
α

 = + = Γ + 
 

, so the  moment estimators α̂  and 

β̂  are the solution to 1ˆ 1
ˆ

X β
α

 = ⋅Γ + 
 

, 2 21 2ˆ 1
ˆiX

n
β

α
 = Γ + 
 

∑ .  Thus ˆ
11
ˆ

Xβ

α

=
 Γ + 
 

 , so once α̂  

has been determined 11
α̂

 Γ + 
 

 is evaluated and β̂  then computed.  Since 2 2 2 1ˆ 1
ˆ

X β
α

 = ⋅Γ + 
 

, 

2

2
2

21
1 ˆ

11
ˆ

iX
n X

α

α

 Γ + 
 =
 Γ + 
 

∑ , so this equation must be solved to obtain α̂ . 

 

b. From a, 2
2

21
1 16,500 ˆ1.05

120 28.0 1
ˆ

α

α

 Γ +    = =     Γ + 
 

, so 

2 11
1 ˆ.95

21.05 1
ˆ

α

α

 Γ + 
 = =
 Γ + 
 

, and from the hint, 

1 ˆ.2 5
ˆ

α
α
= ⇒ = .  Then 

( ) ( )
28.0ˆ

1.2 1.2
xβ = =

Γ Γ
. 

 
 
22.  

a. ( )
1

0

1 1( ) 1 1
2 2

E X x x dxθ θθ
θ θ
+

= + = = −
+ +∫ , so the moment estimator θ̂  is the solution to 

11 ˆ 2
X

θ
= −

+
, yielding 1ˆ 2

1 X
θ = −

−
.  Since ˆ.80, 5 2 3.x θ= = − =  

 

b. ( ) ( ) ( )1 1 2,..., ; 1 ...n
n nf x x x x x θθ θ= + , so the log likelihood is ( ) ( )ln 1 ln in xθ θ+ + ∑ .  Taking d

dθ
 and 

equating to 0 yields ln( )
1 i

n x
θ

= −
+ ∑ , so ˆ 1

ln( )i

n
X

θ = − −
∑

.  Taking ln(xi) for each given xi yields 

ultimately ˆ 3.12θ = . 
 
 
23. Determine the joint pdf (aka the likelihood function), take a logarithm, and then use calculus: 

22 /2/2 /2
1

1

2
1

22 2

1,..., | ) (2π )
2π

) ln[ ( ,..., | )] ln(2π) ln( ) / 2
2 2

( ) 0 / 2

(

(

0 0
2

ii

n
xx n

n
i

n i

i i

x e e

n nf x x x

n

f x

nx x

θθθ θ
θ

θ θ θ θ

θ θ θ
θ

−

=

−− ∑

= ⇒ −

= =

= = − − −

′ = − + + =

∏

∑

∑ ∑





   

Solving for θ, the maximum likelihood estimator is 21ˆ
iX

n
θ = ∑ . 
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24. The number of incorrect diagnoses, X, until r correct diagnoses are made has a negative binomial 
distribution: X ~ nb(r, p). To find the mle of p, we’ll take the derivative of the log-likelihood function 

( )
1 1

ln 1 ln ln(( n) ) l (1 )xrx r x r
p p r p x p

x x
p

 + −  + −   
− = + + −    

    
= , set it equal to zero, and solve for p.  

1
ln ln( ) ln) )( (1

1
x rd r xr p x p

xdp p p
p

 + −  
+ + − = −   − 

=


′
  = 0 ⇒ r(1 – p) = xp ⇒ p = r/(r+x), so the mle 

of p is ˆ rp
r x

=
+

.  This is the number of successes over the total number of trials; with r = 3 and x = 17, p̂ = 

.15. 
Yes, this is the same as the mle based on a random sample of 20 mechanics with 3 correct diagnoses — see 
the binomial mle for p in Exercise 6.20.  
Both mles are equal to the fraction (number of successes) / (number of trials). 

In contrast, the unbiased estimator from Exercise 6.17 is 1ˆ
1

rp
r x

−
=

+ −
, which is not the same as the 

maximum likelihood estimator. (With r = 3 and x = 17, the calculated value of the unbiased estimator is 
2/19, rather than 3/20.) 

 
 
25.   

a. 2ˆ 384.4; 395.16x sµ = = = , so ( ) ( )2 21 9ˆ 395.16 355.64
10ix x

n
σ− = = =∑  and ˆ 355.64 18.86σ = =  

(this is not s). 
 
b. The 95th percentile is 1.645µ σ+  , so the mle of this is (by the invariance principle) 

ˆ ˆ1.645 415.42µ σ+ = . 

c. The mle of P(X ≤ 400) is, by the invariance principle, 
ˆ400 400 384.4

ˆ 18.86
µ

σ
− −   Φ = Φ   

   
= Φ(0.83) = 

.7967. 
 
26. Ri ~ Exponential(λ) implies Yi = tiRi ~ Exponential(λ/ti). Hence, the joint pdf of the Y’s, aka the likelihood, 

is 

1 1 ( / ) ( / )( / )
1 1

1

( )) ( ,..., ; ) ( / ( / ) n i in

n
t y y tt y

nn
n

L f y y t e t e
t

e
t

λ λλ λλ λ λ λ −− Σ− == = 



.  

To determine the mle, find the log-likelihood, differentiate, and set equal to zero: 

1
1

( ) ln[ ( )] ln( ) ln( )
n

i
n

i i

y
L n t t

t
λ λ λ λ

=

= = − − − ∑   ⇒ 
1

( ) 0 0
n

i

i i

yn
t

λ
λ =

′ = − − =∑ ⇒ 
1
( / )n

i ii

n
y t

λ
=

=
∑

 . 

Therefore, the mle of λ under this model is 
1

ˆ
( / )n

i ii

n
Y t

λ
=

=
∑

. 
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27.  

a. ( ) ( )
( )

1 /
1 2

1

...
,..., ; ,

ix
n

n n n

x x x e
f x x

α β

αα β
β α

− −Σ

=
Γ

, so the log likelihood is 

( ) ( ) ( ) ( )1 ln ln lni
i

x
x n nα α β α

β
− − − − Γ∑∑ .  Equating both d

dα
 and d

dβ
 to 0 yields 

( ) ( ) ( )ln ln 0i
dx n n

d
β α

α
− − Γ =∑  and 2 0ix nα

β β
= =∑ , a very difficult system of equations to solve. 

 

b. From the second equation in a, ix
n xα αβ µ

β
= ⇒ = =∑ , so the mle of μ is ˆ Xµ = . 

 
28.  

a. ( )
2

2 21
1 1

exp / 2
exp / 2 ... exp / 2 ... in

n n n

xxx x x x x
θ

θ θ
θ θ θ

 −Σ       − − =         
.  The natural log of the likelihood 

function is  ( ) ( )
2

ln ... ln
2

i
i n

xx x n θ
θ

Σ
− − .  Taking the derivative with respect to θ and equating to 0 gives 

2

2 0
2

ixn
θ θ

Σ
− + = , so 

2

2
ixnθ Σ

=  and 
2

2
ix

n
θ Σ
= .  The mle is therefore 

2
ˆ

2
iX

n
θ Σ
= , which is identical to the 

unbiased estimator suggested in Exercise 15. 
 

b. For x > 0 the cdf of X is F(x; θ) = P(X ≤ x) = 
2

1 exp
2
x
θ

 −
−  

 
.  Equating this to .5 and solving for x gives 

the median in terms of θ:  
2

2 ln(.5) 1.38.5 exp
2

63x x µ θ
θ

θ
 −

= ⇒ = − == 
 

 . The mle of µ  is 

therefore ˆ1.3863θ . 
 
29.  

a. The joint pdf (likelihood function) is 

 ( )
( )

1,..., ; ,
0

ixn

n
ef x x

λ θλλ θ
− Σ −= 



1 ,...,
otherwise

nx xθ θ≥ ≥
 

Notice that 1 ,..., nx xθ θ≥ ≥  iff ( )min ix θ≥ , and that ( )i ix x nλ θ λ λθ− Σ − = − Σ + .   

Thus likelihood = ( ) ( )exp exp
0

n
ix nλ λ λθ − Σ




  
( )
( )

min
min

i

i

x
x

θ
θ

≥
<

 

Consider maximization with respect to θ.  Because the exponent nλθ  is positive, increasing θ will 
increase the likelihood provided that ( )min ix θ≥ ;  if we make θ larger than ( )min ix , the likelihood 

drops to 0.  This implies that the mle of θ is ( )ˆ min ixθ = .  The log likelihood is now 

( )ˆln( ) in xλ λ θ− Σ − .  Equating the derivative w.r.t. λ to 0 and solving yields 
( )

ˆ
ˆˆ

ii

n n
x nx

λ
θθ

= =
Σ −Σ −

. 

 

b. ( )ˆ min .64,ixθ = =  and 55.80ixΣ = , so 10ˆ .202
55.80 6.4

λ = =
−
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30. The likelihood is ( ) ( ); , 1 n yyn
f y n p p p

y
− 

= − 
 

 where ( )
24 24

0
24 1 xp P X e dx eλ λλ − −= ≥ = − =∫ .  We know 

ˆ yp
n

= , so by the invariance principle ˆ24 ˆlnˆˆ .0120
24

pp e λ λ−= ⇒ = − =  for n = 20, y = 15. 

 

Supplementary Exercises 
 
31. Substitute k = ε/σY into Chebyshev’s inequality to write P(|Y –  μY| ≥ ε) ≤ 1/(ε/σY)2 = V(Y)/ε2.  Since 

( )E X µ= and 2( ) /V X nσ= , we may then write ( )
2

2

/ nP X σµ ε
ε

− ≥ ≤ . As n → ∞, this fraction converges 

to 0, hence ( )P X µ ε− ≥  → 0, as desired. 

 
32.  

a. ( ) ( ) ( ) ( ) ( )1 1,..., ...
n

Y n n
yF y P Y y P X y X y P X y P X y
θ
 = ≤ = ≤ ≤ = ≤ ≤ =  
 

 for 0 ≤ y ≤ θ, so 

( )
1n

Y n
nyf y
θ

−

= . 

b.  
1

0
( ) .

1

nny nE Y y dy
n n

θ
θ

−

= ⋅ =
+∫   While ˆ Yθ =  is not unbiased, 1n Y

n
+  is, since 

( )1 1 1
1

n n n nE Y E Y
n n n n

θ θ+ + +  = = ⋅ =  + 
. 

 
 
33. Let x1 = the time until the first birth, x2 = the elapsed time between the first and second births, and so on.  

Then ( ) ( ) ( )1 22
1,..., ; 2 ... !n kn x kxx x n

nf x x e e n e n eλ λλ λλ λ λ λ λ− − Σ− −= ⋅ = .  Thus the log likelihood is 

( ) ( )ln ! ln kn n kxλ λ+ − Σ .  Taking d
dλ

 and equating to 0 yields ˆ
k

n
kx

λ =
Σ

.   

For the given sample, n = 6, x1 = 25.2, x2 = 41.7 – 25.2 = 16.5, x3 = 9.5, x4 = 4.3, x5 = 4.0, x6 = 2.3; so 
6

1
(1)(25.2) (2)(16.5) ... (6)(2.3) 137.7k

k
kx

=

= + + + =∑  and 6ˆ .0436
137.7

λ = = . 

 
 
34. ( )2 2 2 2MSE ( ) Bias ( ).KS V KS KS= +   ( )2 2 2 2 2 2Bias( ) ( ) 1KS E KS K Kσ σ σ σ= − = − = − , and 

( ) ( ) ( )
4

222 2 2 2 2 2 2 2 21
( ) ( ) ( ) ( )

1
n

V KS K V S K E S E S K
n

σ
σ

 +
   = = − = −      − 

 

( )
2 4 2

2 42 2MSE 1
1 1

K K K
n n
σ σ

 
= ⇒ = + − − − 

.  To find the minimizing value of K, take d
dK

 and equate to 0; 

the result is 1
1

nK
n
−

=
+

; thus the estimator which minimizes MSE is neither the unbiased estimator (K = 1) 

nor the mle ( 1nK
n
−

= ). 
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35.  
xi+ xj 23.5 26.3 28.0 28.2 29.4 29.5 30.6 31.6 33.9 49.3 
23.5 23.5 24.9 25.75 25.85 26.45 26.5 27.05 27.55 28.7 36.4 
26.3  26.3 27.15 27.25 27.85 27.9 28.45 28.95 30.1 37.8 
28.0   28.0 28.1 28.7 28.75 29.3 29.8 30.95 38.65 
28.2    28.2 28.8 28.85 29.4 29.9 31.05 38.75 
29.4     29.4 29.45 30.0 30.5 30.65 39.35 
29.5      29.5 30.05 30.55 31.7 39.4 
30.6       30.6 31.1 32.25 39.95 
31.6        31.6 32.75 40.45 
33.9         33.9 41.6 
49.3          49.3 

 
There are 55 averages, so the median is the 28th in order of increasing magnitude. Therefore, ˆ 29.5.µ =  

 
36. With  555.86x =∑  and 2 15,490x =∑ ,  2.1570 1.4687s = = .  The six x−   are, in increasing order, 

.02, .02, .08, .22, .32, .42, .53, .54, .65, .81, .91, 1.15, 1.17, 1.30, 1.54, 1.54, 1.71, 2.35, 2.92, 3.50.  The 

median of these values is ( ).81 .91
.86

2
+

= .  The estimate based on the resistant estimator is then 

.86 1.275
.6745

= .  This estimate is in reasonably close agreement with s. 

 
 

37. Let ( )
( )

1
2

2
2 1

n

n
n

c
−

−

Γ
=
Γ ⋅

.  Then E(cS) = cE(S), and c cancels with the two Γ factors and the square root in E(S), 

leaving just σ.  When n = 20, ( )
( ) 2 2

19 1
2

919

(.5) (.5)9.5 (8.5)(7.5) (8.5)(7.5)
10 (10 1

.
)! 9!

( 5)c πΓ
= = =
Γ

Γ
⋅ −

   = 1.0132. 

 
38.  

a. The likelihood is 
( ) ( )

( )
( ) ( )( )2 2

2 2 22 2 2

2 21 2

1 1 1
2 2 2

x yi i i ix yi i i in

ni
e e e

µ µµ µ

σ σ σ

πσ πσ πσ

Σ − +Σ −− −− − −

=
Π ⋅ = .  The log likelihood is thus 

( ) ( ) ( )( )2 2

2
2

2
ln 2 i i i ix y

n
µ µ

σ
πσ

Σ − +Σ −
− − .  Taking 

i

d
dµ

 and equating to zero gives ˆ
2

i i
i

x yµ +
= .  Substituting 

these estimates of the ˆ siµ  into the log likelihood gives 

( ) 2

2 2
2 1

2
ln 2

2 2
i i i i

i i
x y x yn x y

σ
πσ

 + +   − − − + −         
∑ ∑ ( ) ( )( )2

22 1 1
22

ln 2 i in x y
σ

πσ= − − Σ − .  Now 

taking 2

d
dσ

, equating to zero, and solving for 2σ  gives the desired result. 

 

b. ( ) ( )( ) ( )22 21 1ˆ
4 4i i i iE E X Y E X Y

n n
σ = Σ − = ⋅Σ − , but ( ) ( ) ( ) 22

i i i i i iE X Y V X Y E X Y− = − + −   =        

2σ2 – [0]2 = 2σ2. Thus ( ) ( )
2

2 2 21 1ˆ 2 2
4 4 2

E n
n n

σσ σ σ= Σ = = , so the mle is definitely not unbiased—the 

expected value of the estimator is only half the value of what is being estimated! 
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CHAPTER 7 
 

Section 7.1 
 
1.  

a. zα/2 = 2.81 implies that α/2 = 1 – Φ(2.81) = .0025, so α = .005 and the confidence level is 100(1–α)% = 
99.5%. 

 
b. zα/2 = 1.44 implies that α = 2[1 – Φ(1.44)] = .15, and the confidence level is 100(1–α)% = 85%.  
 
c. 99.7% confidence implies that α = .003, α/2 = .0015, and z.0015 = 2.96. (Look for cumulative area equal 

to 1 – .0015 = .9985 in the main body of table A.3.) Or, just use z ≈ 3 by the empirical rule. 
 
d. 75% confidence implies α = .25, α/2 = .125, and z.125 = 1.15. 

 
2.  

a. The sample mean is the center of the interval, so 114.4 115.6 115
2

x +
= = . 

 
b. The interval (114.4, 115.6) has the 90% confidence level.  The higher confidence level will produce a 

wider interval. 
 
 
3.  

a. A 90% confidence interval will be narrower. The z critical value for a 90% confidence level is 1.645, 
smaller than the z of 1.96 for the 95% confidence level, thus producing a narrower interval. 

 
b. Not a correct statement.  Once and interval has been created from a sample, the mean μ is either 

enclosed by it, or not.  We have 95% confidence in the general procedure, under repeated and 
independent sampling. 

 
c. Not a correct statement.  The interval is an estimate for the population mean, not a boundary for 

population values. 
 
d. Not a correct statement.  In theory, if the process were repeated an infinite number of times, 95% of the 

intervals would contain the population mean μ. We expect 95 out of 100 intervals will contain μ, but 
we don’t know this to be true. 
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4.  

a. ( ) ( )1.96 3
58.3 58.3 1.18 57.1,59.5 .

25
± = ± =  

 

b. ( ) ( )1.96 3
58.3 58.3 .59 57.7,58.9 .

100
± = ± =  

 

c. ( ) ( )2.58 3
58.3 58.3 .77 57.5,59.1 .

100
± = ± =  

 
d. 82% confidence ⇒ 1 – α = .02 ⇒ α = .18 ⇒ α/2 = .09, and z.09 = 1.34. The interval is 

( ) ( )1.34 3
58.3 57.9,58.7

100
± = . 

 

e. ( ) 2
2 2.58 3

239.62 240
1

n
 

= = 
 

 . 

 
 
5.  

a. ( )( )1.96 .75
4.85 4.85 .33

20
± = ± =  (4.52, 5.18). 

 

b. zα/2 = z.01 = 2.33, so the interval is ( )( )2.33 .75
4.56

16
± =  (4.12, 5.00). 

 

c. ( )( ) 2
2 1.96 .75

54.02 55
.40

n
 

= = 
 

 . 

 

d. Width w = 2(.2) = .4, so ( )( ) 2
2 2.58 .75

93.61 94
.4

n
 

= = 
 

 . 

 
 
6.  

a. ( )( )1.645 100
8439 8439 32.9

25
± = ± =  (8406.1, 8471.9). 

 
b. 1 .92 .08 0/ . 42α α α− = ⇒ = ⇒ =  so zα/2 = z.04 = 1.75.  

 

7. If  
2

2L z
n

α

σ
=  and we increase the sample size by a factor of 4, the new length is 

2 2

12 2
2 24

LL z z
n n

α α

σ σ  ′ = = =    
.  Thus halving the length requires n to be increased fourfold.  If  

25n n′ = , then 
5
LL′ = , so the length is decreased by a factor of 5. 
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8.  

a. With probability 1 – α, ( )
1 2

z X z
nα α
σµ  ≤ − ÷ ≤ 

 
.  These inequalities can be manipulated exactly as 

was done in the text to isolate μ; the result is 
2 1

X z X z
n nα α
σ σµ− ≤ ≤ + , so a 100(1–α)% 

confidence interval is 
2 1

, .X z X z
n nα α
σ σ − + 

 
 

 

b. The usual 95% confidence interval has length 3.92
n
σ , while this interval will have length 

( )1 2
z z

nα α
σ

+ .  With 
1 .0125 2.24z zα = =  and 

2 .0375 1.78z zα = = , the length is 

( )2.24 1.78 4.02 ,
n n
σ σ

+ =  which is longer. 

 
 
9.  

a. 1.645 ,x
n
σ − ∞ 

 
.  From 5a, 4.85x = , σ = .75, and n = 20; .754.85 1.645 4.5741

20
− = , so the 

interval is ( )4.5741,∞ . 
 

b. ,x z
nα
σ − ∞ 

 
 

 
 

c. , x z
nα
σ −∞ + 

 
; From 4a, 58.3x = , σ = 3.0, and n = 25; 358.3 2.33 59.70

25
+ = , so the interval is 

(–∞, 59.70). 
10.  

a. When n = 15, 2 iXλ∑ has a chi-squared distribution with 30 df.  From the 30 df. row of Table A.6, 
the critical values that capture lower and upper tail areas of .025 (and thus a central area of .95) are 

16.791 and 46.979.  An argument parallel to that given in Example 7.5 gives 
2 2

,
46.979 16.791

i ix x 
  
 

∑ ∑  as a 

95% CI for 1 .µ
λ

=   Since 63.2ix =∑  the interval is (2.69, 7.53). 

 
b. A 99% confidence level requires using critical values that capture area .005 in each tail of the chi-

squared curve with 30 df.; these are 13.787 and 53.672, which replace 16.791 and 46.979 in a. 
 

c. ( ) 2

1V X
λ

=  when X has an exponential distribution, so the standard deviation is 1
λ

, the same as the 

mean.  Thus the interval of a is also a 95% CI for the standard deviation of the lifetime distribution.  
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11. Y is a binomial rv with n = 1000 and p = .95, so E(Y) = np = 950, the expected number of intervals that 
capture μ, and 6.892Y npqσ = = .  Using the normal approximation to the binomial distribution,  
P(940 ≤ Y ≤ 960) = P(939.5 ≤ Y ≤ 960.5) ≈ P(–1.52 ≤ Z ≤ 1.52) = .9357 – .0643 = .8714. 

 
 

Section 7.2 
 
12.  

a. Yes: even if the data implied a non-normal population distribution, the sample size (n = 43) is large 
enough that the “large-sample” confidence interval for µ would still be reasonable. 
 

b. For this data set, the sample mean and standard deviation are x = 1191.6 and s = 506.6. The z critical 
value for 99% confidence is z.01/2 = z.005 ≈ 2.58. Thus, a 99% confidence interval for µ, the true 
average lifetime (days) subsequent to diagnosis of all patients with blood cancer is 

506.62.58 1191.6 2.58
43

sx
n

± = ± = 1191.6 ± 199.3 = (992.3, 1390.9). 

 
 
13.  

a. 
50

43.16496.116.654025. ±=±
n
szx = (608.58, 699.74). We are 95% confident that the true average 

CO2 level in this population of homes with gas cooking appliances  is between 608.58ppm and 
699.74ppm 

 

b. ( )( ) ( )( ) 72.13
50

17596.1217596.1250 ==⇒== n
n

w ⇒ n = (13.72)2 = 188.24, which rounds up to 189. 

 
14.  

a. .025
3251427 1.96
514

sx z
n

± = ±  = 1427 ± 28.1 = (1398.9, 1455.1). We are 95% confident that the true 

mean FEV1 of all children living in coal-use homes is between 1398.9 ml and 1455.1 ml.   
This interval is quite narrow relative to the scale of the data values themselves, so it could be argued 
that the mean µ has been precisely estimated. (This is really a judgment call.) 

 

b. 
2 2

/22 2(1.96)(320)
50

zn
w

sα   = =     
= 629.4 ⇒ n must be at least 630. 

 
 
15.  

a. .84zα = , and ( ).84 .7995 .80Φ = ≈ , so the confidence level is 80%. 
 
b. 2.05zα = , and ( )2.05 .9798 .98Φ = ≈ , so the confidence level is 98%. 
 
c. .67zα = , and ( ).67 .7486 .75Φ = ≈ , so the confidence level is 75%. 
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16.  

a. The boxplot shows a high concentration in the middle half of the data (narrow box width). There is a 
single outlier at the upper end, but this value is actually a bit closer to the median (55 kV) than is the 
smallest sample observation. 

 

70656055504540
Breakdown voltage (kV)

 
 

b. From software, x = 54.7 and s = 5.23. The 95% confidence interval is then 
5.231.96 54.7 1.96 54.7 1.5

48
sx
n

± = ± = ± = (53.2, 56.2) 

We are 95% confident that the true mean breakdown voltage under these conditions is between 53.2 
kV and 56.2 kV. The interval is reasonably narrow, indicating that we have estimated μ fairly 
precisely. 

 
c. A conservative estimate of standard deviation would be (70 – 40)/4 = 7.5. To achieve a margin of error 

of at most 1 kV with 95% confidence, we desire 

 
2 21.96 1.96(7.5)1

1 1
1.96 s sn

n
   ≤ ⇒ ≥       

= = 216.09. 

Therefore, a sample of size at least n = 217 would be required. 
 
 

17. .01
4.59135.39 2.33 135.39 .865 134.53
153

sx z
n

− = − = − = .  We are 99% confident that the true average 

ultimate tensile strength is greater than 134.53. 
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18.  

a. The distribution of impression depths from these armor tests is roughly symmetric, with the exception 
of three high outliers: 44.6 mm, 48.3 mm, and 55.0 mm. 

5550454035302520
depth (mm)  

 
b. The accompanying normal probability plot shows a stark deviation from linearity, due almost entirely 

to the three large outliers. (Since a normal distribution is symmetric, a sample from a normal 
population shouldn’t have so many outliers all to one side.) We conclude here that the population 
distribution of impression depths is not normal. However, since the sample size is quite large (n = 83), 
we can still use the “large-sample” inference procedures for the population mean µ.  

6050403020

99.9

99

95
90

80
70
60
50
40
30
20

10
5

1

0.1

depth (mm)

Pe
rc

en
t

Mean 33.37
StDev 5.268
N 83
AD 0.914
P-Value 0.019

Probability Plot of depth (mm)
Normal 

 
 

c. From the output provided, x = 33.370 and /s n = 0.578. With z.01 = 2.33, a 99% upper confidence 
bound for the true mean impression depth under these testing conditions is 33.370 + 2.33(0.578) = 
34.72 mm. 

 

19. 201ˆ .5646
356

p = = ; We calculate a 95% confidence interval for the proportion of all dies that pass the probe: 

( )
( )

( )( ) ( )
( )

( )
( )

2 2

2

2

1.96 .5646 .4354 1.96
.5646 1.96

2 356 356 4 356 .5700 .0518 .513,.615
1.010791.96

1
356

+ ± +
±

= =

+

. The simpler CI formula 

(7.11) gives .5646(.4354)1.56
6

46 .96
35

± = (.513, .616), which is almost identical. 
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20.  

a. With the numbers provided, a 99% confidence interval for the parameter p is 

( )
( )

( )

2 2

2

2

2.58 (.53)(.47) (2.58).53 2.58
2 2343 2343 4(2343)

2.58
1

2343

+ ± +

+

= (.503, .556). We are 99% confident that the proportion 

of all adult Americans who watched streamed programming was between .503 and .556. 
 

b. n = 
2 2

/22 2(2.58)(.5)(.
.0

ˆ 5)
5

ˆz
w

pqα   =     
= 665.64, so n must be at least 666. 

 

21. For a one-sided bound, we need zα = z.05 = 1.645; 250 .25
1000

p̂ == ; and 
2

2

.25 1.645 / 2000
1 1.645 /1000

p +
=

+
 = .2507. The 

resulting 95% upper confidence bound for p, the true proportion of such consumers who never apply for a 

rebate, is 
2 2

2

1.645 (.25)(.75) /1000 (1.645)
.2507

1 (1
/ (4

.64
·100

5
0 )

0 0) /1 0
+

+
+

= .2507 + .0225 = .2732.  

Yes, there is compelling evidence the true proportion is less than 1/3 (.3333), since we are 95% confident 
this true proportion is less than .2732. 

 
22.  

a. For a one-sided bound, we need zα = z.05 = 1.645; 10 .07
143

p̂ == ; and 
2

2

.07 1.645 / (2 143)
1 1.645 /143

p + ⋅
=

+
 = .078. 

The resulting 95% lower confidence bound for p, the true proportion of such artificial hip recipients 

that experience squeaking, is 
2 2

2

1.645 (.07)(.93) /143 (1.6 / (4·143 )45)
.078

1 (1.645) /143
+

−
+

= .078 – .036 = .042. 

We are 95% confident that more than 4.2% of all such artificial hip recipients experience squeaking. 
 

b. If we were to sample repeatedly, the calculation method in (a) is such that p will exceed the calculated 
lower confidence bound for 95% of all possible random samples of n = 143 individuals who received 
ceramic hips. (We hope that our sample is among that 95%!)  

 
23.  

a. With p̂  = .25, n = 2003, and zα/2 = z.005 ≈ 2.58, the 99% confidence interval for p is  

( )
( )

( )

2 2

2

2

2.58 (.25)(.75) (2.58).25 2.58
2 2003 2003 4(2003)

2.58
1

2003

+ ± +

+

= (.225, .275). 

 
b. Using the “simplified” formula for sample size and ˆ ˆ .5p q= = , 

2 2

2 2

4 4(2.576) (.5)(.5) 2654.31
(.05

ˆ
)

ˆzn
w

pq
= = =  

So, a sample of size at least 2655 is required. (We use ˆ ˆ .5p q= = here, rather than the values from the 
sample data, so that our CI has the desired width irrespective of what the true value of p might be. See 
the textbook discussion toward the end of Section 7.2.) 
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24. n = 56, 8.17x = , s = 1.42; for a 95% CI, zα/2 = 1.96.  The interval is   ( )1.428.17 1.96 7.798,8.542
56

 ± = 
 

.  

We make no assumptions about the distribution if percentage elongation. 
 

25.  

a. 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 2 4 42 1.96 .25 1.96 .01 4 1.96 .25 .25 .01 .01 1.96

381
.01

n
− ± − +

= ≈  

 

b. ( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 2 4 41 2 1 2 1 2
3 3 3 3 3 32 1.96 1.96 .01 4 1.96 .01 .01 1.96

339
.01

n
⋅ − ± ⋅ ⋅ − +

= ≈  

 
 

26. Using the quadratic equation to solve the limits 
/

zx
n
µ

µ
−

= ±  gives the solutions 

2 2 4
2 2
z z n
n

x z x
n

µ
  +

= + ± ⋅ 
 

. For the data provided, n = 50 and x =203/50 = 4.06. Substituting these and 

using z = 1.96, we are 95% confident that the true value of μ is in the interval 
22 1.96 4(50)(4.06)1.964.06 1.96

2(50) 2(50)
  +

+ ± ⋅ 
 

 = 4.10 ± .56 = (3.54, 4.66).  

Note that for large n, this is approximately equivalent to 
ˆˆ zx

n n
x z σµ± = ±  (since μ = σ2 for the Poisson 

distribution). 
 

27. Note that the midpoint of the new interval is 
2

2

/ 2x z
n z
+
+

, which is roughly 2
4

x
n
+
+

 with a confidence level of 

95% and approximating 1.96 ≈ 2.  The variance of this quantity is ( )
( )22

1np p

n z

−

+
, or roughly ( )1

4
p p

n
−
+

.  Now 

replacing p with 2
4

x
n
+
+

, we have 
2

2 21
2 4 4
4 4

x x
x n nz
n nα

+ +  −  + + +    ± + + 
. For clarity, let * 2x x= +  and 

* 4n n= + , then 
*

*
*ˆ xp

n
=  and the formula reduces to 

2

* *
*

*

ˆ ˆˆ p qp z
nα± , the desired conclusion.  For further 

discussion, see the Agresti article. 
 

Section 7.3 
 
28.  

a. 1.341 
 
b. 1.753 
 
c. 1.708 

 
d. 1.684 
 
e. 2.704 
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29.  

a. .025,10 2.228t =  
b. .025,20 2.086t =  
c. .005,20 2.845t =  

d. .005,50 2.678t =  
e. .01,25 2.485t =  
f. .025,5 2.571t− = −  

 
30.  

a. .025,10 2.228t =  
b. .025,15 2.131t =  
c. .005,15 2.947t =  
 
 

d. .005,4 4.604t =  
e. .01,24 2.492t =  
f. .005,37 2.712t ≈  

 

31.  
a. 05,10 1.812t =  
b. .05,15 1.753t =  
c. .01,15 2.602t =  

d. .01,4 3.747t =  
e. .025,24 2.064t≈ =  
f. .01,37 2.429t ≈  

 
32. We have n = 20, x = 1584, and s = 607; the critical value is t.005,20–1 = t.005,19 = 2.861. The resulting 99% CI 

for μ is  
6072.81584 61

20
± = 1584 ± 388.3 = (1195.7, 1972.3) 

We are 99% confident that the true average number of cycles required to break this type of condom is 
between 1195.7 cycles and 1972.3 cycles. 

 
33.  

a. The boxplot indicates a very slight positive skew, with no outliers.  The data appears to center near 
438.  

 
b. Based on a normal probability plot, it is reasonable to assume the sample observations came from a 

normal distribution. 
 

420 430 440 450 460 470

polymer
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c. With df = n – 1 = 16, the critical value for a 95% CI is .025,16 2.120t = , and the interval is 

( ) ( )15.14438.29 2.120 438.29 7.785 430.51,446.08
17

 ± = ± = 
 

.  Since 440 is within the interval, 440 is 

a plausible value for the true mean.  450, however, is not, since it lies outside the interval. 
 
 
34. n = 14, 8.48x = , s = .79; .05,13 1.771t =  

a. A 95% lower confidence bound: .798.48 1.771 8.48 .37 8.11
14

 − = − = 
 

.  With 95% confidence, the 

value of the true mean proportional limit stress of all such joints is greater than 8.11 MPa. We must 
assume that the sample observations were taken from a normally distributed population. 

 

b. A 95% lower prediction bound: ( ) 18.48 1.771 .79 1 8.48 1.45 7.03
14

− + = − = .  If this bound is 

calculated for sample after sample, in the long run 95% of these bounds will provide a lower bound for 
the corresponding future values of the proportional limit stress of a single joint of this type. 

 
 
35. n = 15, x = 25.0, s = 3.5; .025,14 2.145t =  

a. A 95% CI for the mean: 3.525.0 2.145
15

±  = (23.06, 26.94). 

 

b. A 95% prediction interval: 125.0 2.145(3.5) 1
15

± +  = (17.25, 32.75).  The prediction interval is about 

4 times wider than the confidence interval. 
 
 
36. n = 26, 370.69x = , s = 24.36; .05,25 1.708t =  

a. A 95% upper confidence bound: ( ) 24.36370.69 1.708 370.69 8.16 378.85
26

 + = + = 
 

 

 

b. A 95% upper prediction bound: ( ) 1370.69 1.708 24.36 1 370.69 42.45 413.14
26

+ + = + =  

 
c. Following a similar argument as the one presented in the Prediction Interval section, we need to find 

the variance of  newX X− :  ( ) ( ) ( ) ( ) ( )( )1
new new 27 282V X X V X V X V X V X X− = + = + +  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
27 28 27 282 2 4 4V X V X V X V X V X V X= + + = + +  

2
2 2 21 1 1 1

4 4 2n n
σ σ σ σ  = + + = + 

 
.  We eventually arrive at new

1 1
2

~
n

X XT
s
−

=
+

t distribution with n – 1 df, 

so the new prediction interval is 1 1
/2, 1 2n nx t sα −± ⋅ + .  For this situation, we have 

( ) ( )1 1370.69 1.708 24.36 370.69 30.53 340.16,401.22 .
2 26

± + = ± =  
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37.  
a. A 95% CI : ( ) ( ).9255 2.093 .0181 .9255 .0379 .8876,.9634± = ± ⇒  
 
b. A 95% P.I. : ( ) ( )1

20.9255 2.093 .0809 1 .9255 .1735 .7520,1.0990± + = ± ⇒  
 
c. A tolerance interval is requested, with k = 99, confidence level 95%, and n = 20.  The tolerance critical 

value, from Table A.6, is 3.615.  The interval is ( ) ( ).9255 3.615 .0809 .6330,1.2180± ⇒ . 
 
38.  

a. Maybe: A normal probability plot exhibits some curvature, though perhaps not enough for us to 
certainly declare the population non-normal. (With n = 5, it’s honestly hard to tell.) 

 
b. From the data provided, x = 107.78 and s = 1.076. The corresponding 95% CI for µ is 

.025,5 1
1.076107.78 2.776

5
sx t
n−± = ±  = (106.44, 109.12). The CI suggests that while 107 is a plausible 

value for µ (since it lies in the interval), 110 is not. 
 

c. A 95% PI for a single future value is 1
5107.78 2.776 1.076 1± ⋅ + = (104.51, 111.05). As is always the 

case, the prediction interval for a single future value is considerably wider (less precise) than the CI for 
the population mean. 
 

d. Looking at Table A.6, the critical value for a 95% confidence tolerance interval capturing at least 95% 
of the population, based on n = 5, is k = 5.079. The resulting tolerance interval is 
x  ± k · s = 107.78 ± 5.079(1.076) = (102.31, 113.25).  

 
 
39.  

a.  

Average: 52.2308
StDev: 14.8557
N: 13

Anderson-Darling Normality Test
A-Squared: 0.360
P-Value:   0.392

30 50 70

.001

.01

.05

.20

.50

.80

.95

.99

.999

Pr
ob

ab
ilit

y

volume

Normal Probability Plot

 
 
Based on the above plot, generated by Minitab, it is plausible that the population distribution is normal. 

 
b. We require a tolerance interval. From table A.6, with 95% confidence, k = 95, and n=13, the tolerance 

critical value is 3.081.  ( ) ( )3.081 52.231 3.081 14.856 52.231 45.771 6.460,98.002x s± = ± = ± ⇒ . 
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c. A prediction interval, with .025,12 2.179t = :  

( ) ( )1
1352.231 2.179 14.856 1 52.231 33.593 18.638,85.824± + = ± ⇒  

 
 
40.  

a. We need to assume the samples came from a normally distributed population. 
 
b. A normal probability plot, generated by Minitab, appears below. The very small P-value indicates that 

the population distribution from which this data was taken is most likely not normal. 

P-Value:   0.008
A-Squared: 1.065

Anderson-Darling Normality Test

N: 153
StDev: 4.54186
Average: 134.902

145135125

.999

.99

.95

.80

.50

.20

.05

.01

.001

Pr
ob

ab
ilit

y

strength

Normal Probability Plot

 
 

c. Despite the apparent lack of normality, we will proceed with a 95% lower prediction bound: with df = 
153 – 1 = 152, we estimate t = –1.98: ( ) 1

153135.39 1.98 4.59 1 135.39 9.12 126.27− + = − = . 
 
 
41. The 20 df row of Table A.5 shows that 1.725 captures upper tail area .05 and 1.325 captures upper tail area 

.10  The confidence level for each interval is 100(central area)%.   
For the first interval, central area = 1 – sum of tail areas = 1 – (.25 + .05) = .70, and for the second and third 
intervals the central areas are 1 – (.20 + .10) = .70 and 1 – (.15 + .15) = 70.  Thus each interval has 

confidence level 70%.  The width of the first interval is ( ).687 1.725
2.412

s s
n n
+

= , whereas the widths of 

the second and third intervals are 2.185 and 2.128 standard errors respectively.  The third interval, with 
symmetrically placed critical values, is the shortest, so it should be used.  This will always be true for a t 
interval. 
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Section 7.4 
 
42.  

a. 307.222
15,1. =χ  (.1 column, 15 df row) 

 
b. 381.342

25,1. =χ  
 
c. 313.442

25,01. =χ  
 

d. 925.462
25,005. =χ  

 
e. 523.112

25,99. =χ  (.99 col., 25 df row) 
 
f. 519.102

25,995. =χ  

 
43.  

a. 307.182
10,05. =χ  

 
b. 940.32

10,95. =χ  

c. Since 2
22,975.987.10 χ=  and 2

22,025.78.36 χ= , ( ) 95.2
22,025.

22
22,975. =≤≤ χχχP . 

 
d. Since 2

25,95.611.14 χ=  and 2
25,05.652.37 χ= , P(χ2 < 14.611 or χ2 > 37.652) =  

1 – P(χ2 > 14.611) + P(χ2 > 37.652) = (1 – .95) + .05 = .10. 
 
 

44. n – 1 = 8, 2
.025,8 17.534χ = , 2

.975,8 2.180χ = , so the 95% interval for 2σ  is ( )8(7.90) 8(7.90), 3.60,28.98
17.534 2.180

  = 
 

.  

The 95% interval for σ is ( ) ( )38.5,90.198.28,60.3 = . 
 
 
45. For the n = 8 observations provided, the sample standard deviation is s = 8.2115.  A 99% CI for the 

population variance, σ2, is given by 
( ) ( )2 2 2 2 2 2

.005, 1 .995, 1( 1) ,( 1) 7 8.2115 / 20.276,7/ / 8.2115 / 0.989n nn s n sχ χ− −− − = ⋅ ⋅  = (23.28, 477.25) 
Taking square roots, a 99% CI for σ is (4.82, 21.85). Validity of this interval requires that coating layer 
thickness be (at least approximately) normally distributed. 

 
46.  

a. Using a normal probability plot, we ascertain that it is plausible that this sample was taken from a 
normal population distribution. 

 
b. With s = 1.579 , n = 15, and 2

.95,14χ = 6.571, the 95% upper confidence bound for σ is 

( ) 305.2
571.6
579.114 2

= . 
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Supplementary Exercises 
 
47.  

a. n = 48, 8.079x a= , s2 = 23.7017, and s = 4.868.   
A 95% CI for μ = the true average strength is  

( )4.8681.96 8.079 1.96 8.079 1.377 6.702,9.456 .
48

sx
n

± = ± = ± =  

 

b. 13ˆ .2708
48

p = = .  A 95% CI for p is 

( )
( )( )

( ) ( )

2 2

2

2

.2708 .72921.96 1.96.2708 1.96
2 48 48 4 48 .3108 .1319 .166,.410

1.96 1.08001
48

+ ± +
±

= =
+

 

 
48.  

a. With n = 18, x  = 64.41, s = 10.32, and t.02/2,18–1 = t.01,17 = 2.567, a 98% CI for the population mean µ is 

given by 10.322.5664.41 7
18

±  = (58.17, 70.65). 

 
b. Notice the goal is to obtain a lower prediction bound for a single future compressive strength 

measurement. This requires determining 1 1
, 1 181 64.41 2.224(10.32) 1n nsx tα − + = − +−  = 64.41 – 23.58 

= 40.83 MPa.   
 

49. The sample mean is the midpoint of the interval: 60.2 70.6
2

x +
=  = 65.4 N. The 95% confidence margin of 

error for the mean must have been ± 5.2, so /t s n⋅  = 5.2. The 95% confidence margin of error for a 
prediction interval (i.e., an individual) is 11 nt s⋅ +  = 1 / 11 1(5.2)n s nt+ ⋅ = +⋅ = 18.0. Thus, the 95% 
PI is 65.4 ± 18.0 = (47.4 N, 83.4 N).  (You could also determine t from n and α, then s separately.) 

 

50. x =  the midpoint of the interval = 229.764 233.504 231.634.
2
+

=   To find s we use .025,4width 2 st
n

 =  
 

, 

and solve for s.  Here, n = 5, .025,4 2.776t = , and width = upper limit – lower limit = 3.74. 

( ) ( )
( )
5 3.74

3.74 2 2776 1.5063
2 2.7765

s s= ⇒ = = .  So for a 99% CI, .005,4 4.604t = , and the interval is 

( )1.5063231.634 4.604 213.634 3.101 228.533,234.735
5

± = ± = . 

 
51.  

a. With ˆ 31/ 88p =  = .352, 
2

2

.352 1.96 / 2(88)
1 1.96 / 88

p +
=

+
  = .358, and the CI is 

2 2

2

(.352)(.648) 1.96 / 4(8
.35

8)
1.96

1 1.9
8

6 / 88
+

±
+

 = (.260, .456). We are 95% confident that between 26.0% 

and 45.6% of all athletes under these conditions have an exercise-induced laryngeal obstruction. 
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b. Using the “simplified” formula, 
2 2

2 2

ˆ ˆ (.5)(.4 4(1.96) 2401
(.04

5
)

)
w

pz qn = = = . So, roughly 2400 people should be 

surveyed to assure a width no more than .04 with 95% confidence. Using Equation (7.12) gives the 
almost identical n = 2398.  

 
c. No. The upper bound in (a) uses a z-value of 1.96 = z.025. So, if this is used as an upper bound (and 

hence .025 equals α rather than α/2), it gives a (1 – .025) = 97.5% upper bound. If we want a 95% 
confidence upper bound for p, 1.96 should be replaced by the critical value z.05 = 1.645. 

 
 
52. n = 5, x = 24.3, s = 4.1 

a. t.025,4 = 2.776: 09.53.24
5
1.4776.23.24 ±=± = (19.21, 29.39). We are 95% confident that the true 

average arsenic concentration in all such water specimens is between 19.21 μg/L and 29.39 μg/L. 
 

b. A 90% upper bound for σ, with 064.12
4,90. =χ , is 

064.1
)1.4(4 2

= 7.95 μg/L 

 

c. A 95% prediction interval is 
5
11)1.4(776.23.24 +± = (11.83, 36.77). 

 

53. With  ( )1
1 2 3 43

ˆ X X X Xθ = + + − , ( ) ( )2 1
ˆ 1 2 3 49 V X X X V X
θ

σ = + + +  = 
22 2 2
31 2 4

1 2 3 4

1
9 n n n n

σσ σ σ 
+ + + 

 
; 

θσ ˆˆ  is 

obtained by replacing each 2
iσ by 2

is and taking the square root.  The large-sample interval for θ is then 

( )
22 2 2
31 2 41

1 2 3 4 /23
1 2 3 4

1
9

ss s sx x x x z
n n n nα

 
+ + − ± + + + 

 
.   

For the given data, ˆ .50θ = − and ˆ . 718ˆ 1
θ

σ = , so the interval is ( ) ( ).50 1.96 .1718 .84, .16− ± = − − . 
 

54. 11ˆ .2
55

p = = ⇒  a 90% CI is  
( )

( )( )
( ) ( )

2 2

2

2

.2 .81.645 1.645.2 1.645
2 55 55 4 55 .2246 .0887 .1295,.2986

1.645 1.04921
55

+ ± +
±

= =
+

. 

 
 

55. The specified condition is that the interval be length .2, so ( )( ) 2
2 1.96 .8

245.86 246
.2

n
 

= = 
 

 . 

 
 
56. From the data provided, n = 16, x = 7.1875, and s = 1.9585. 

a. A 99% CI for µ, the true average crack initiation depth, is 

.005, 1
1.95857.1875 2.947

16n
sx t
n−± = ±  = (6.144, 8.231) 

 
b. The corresponding 99% PI is 1

167.1875 2.947 1.9585 1± ⋅ + = (1.238, 13.134). 
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c. If we were to take repeated samples of size n = 16 from this population, and from each we constructed 

a 99% prediction interval, then in the long run 99% of all such samples would generate a PI that would 
contain the numerical value of a single future crack initiation depth, X. 

 

57. Proceeding as in Example 7.5 with Tr replacing iXΣ , the CI for 1
λ

 is 
2 2

2 2
1 ,2 ,2

2 2,r r

r r

t t
α αχ χ−

 
  
 

 where 

( )1 ... .r r rt y y n r y= + + + −   In Example 6.7, n = 20, r = 10, and tr = 1115.  With df = 20, the necessary 
critical values are 9.591 and 34.170, giving the interval (65.3, 232.5).  This is obviously an extremely wide 

interval.  The censored experiment provides less information about 1
λ

 than would an uncensored 

experiment with n = 20. 
 

58.  
a. (min( ) max( )) 1 ( min( ) or max( ) )i i i iP X X P X Xµ µ µ≤ ≤ = − < <    

1 ( min( )) (max( ) )i iP X P Xµ µ= − < − <  1 11 ( ,..., ) ( ,..., )n nP X X P X Xµ µ µ µ= − < < − < <       

( ) ( ) ( ) 11 .5 .5 1 .5n n n−= − − = − , as desired. 
 

b. Since  min( ) 1.44ix =  and max( ) 3.54,ix =  the CI is (1.44, 3.54). 
 
c. (2) ( 1) (2) ( 1)( ) 1 ( ) ( )n nP X X P X P Xµ µ µ− −≤ ≤ = − < − <       

= 1 – P(at most one Xi is below µ ) – P(at most one Xi exceeds µ )  

( ) ( ) ( ) ( ) ( ) ( )1 1 11 .5 .5 .5 .5 .5 .5
1 1

n n n nn n− −   
− − − −   

   
( )( ) ( )( ) 11 2 1 .5 1 1 .5n nn n −= − + = − + . Thus the 

confidence coefficient is ( )( ) 11 1 .5 nn −− + ; i.e., we have a ( )( )( )1100 1 1 .5 %nn −− + confidence interval. 

 
59.  

a. 
( )

( )

( )

( )1/ 1/

1/1/

1 /2 1 /21

/2/2
1 1

2 2

n n

nn
n nnu du u

α α

αα

α α α
− −− = = − − = −∫ .  From the probability statement, 

( )
( )

( )
( )

1 1

2 211
max max

n n

i iX X

α α

θ
−

≤ ≤  with probability 1 – α, so taking the reciprocal of each endpoint and 

interchanging gives the CI ( )
( )

( )
( )

1 1

2 2

max max
,

1 n n

i iX X
α α

 
 
 − 

 for θ. 

 

b. 1 max( ) 1n iXα
θ

≤ ≤  with probability 1 – α, so 
( ) 1

11
max n

iX
θ

α
≤ ≤  with probability 1 – α, which yields 

the interval ( ) ( )
1

max
max ,

n

i
i

X
X

α
 
 
 

. 

 
c. It is easily verified that the interval of b is shorter — draw a graph of ( )Uf u  and verify that the 

shortest interval which captures area 1 – α under the curve is the rightmost such interval, which leads 
to the CI of b.  With α = .05, n = 5, and max(xi)=4.2, this yields (4.2, 7.65). 
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60. The length of the interval is  ( ) sz z
nγ α γ−+ , which is minimized when z zγ α γ−+  is minimized, i.e. when 

( ) ( )1 11 1γ α γ− −Φ − +Φ − +  is minimized.  Taking d
dγ

 and equating to 0 yields 
( ) ( )

1 1
1 1φ φγ α γ

=
− − +

  

where ( )φ  is the standard normal pdf. Since the normal pdf if symmetric about zero, this equation is true 

iff  (11 )γ α γ= ± − +− , whence 
2
αγ = . 

 
 
61. 76.2,x =  the lower and upper fourths are 73.5 and 79.7, respectively, and fs = 6.2. The robust interval is 

( ) ( )6.276.2 1.93 76.2 2.6 73.6,78.8
22

 ± = ± = 
 

. 

 77.33x = , s = 5.037, and .025,21 2.080t = , so the t interval is  

( ) ( )5.03777.33 2.080 77.33 2.23 75.1,79.6
22

 ± = ± = 
 

.  The t interval is centered at x , which is pulled out 

to the right of x  by the single mild outlier 93.7; the interval widths are comparable. 
 
 
62.  

a. Since 2 iXλΣ  has a chi-squared distribution with 2n df and the area under this chi-squared curve to the 

right of 2
.95,2nχ is .95, ( )2

.95,2 2 .95n iP Xχ λ< Σ = .  This implies that 
2
.95,2

2
n

iX
χ
Σ

 is a lower confidence bound for 

λ with confidence coefficient 95%.  Table A.7 gives the chi-squared critical value for 20 df as 10.851, 

so the bound is 
( )
10.851 .0098

2 550.87
= .  We can be 95% confident that λ exceeds .0098. 

 
b. Arguing as in a, ( )2

.05,22 .95i nP Xλ χΣ < = .  The following inequalities are equivalent to the one in 
parentheses: 

2
.05,2

2
n

iX
χ

λ <
Σ

 
2
.05,2

2
n

i

t
t

X
χ

λ
−

⇒ − <
Σ

2
.05,2exp ) exp

2
( n

i

t
X

t
χ

λ
 −

⇒ <  Σ 
− .   

Replacing iXΣ by ixΣ  in the expression on the right hand side of the last inequality gives a 95% lower 
confidence bound for te λ− .  Substituting t = 100, 2

.05,20 31.410χ =  and 550.87ixΣ =  gives .058 as the 
lower bound for the probability that time until breakdown exceeds 100 minutes. 
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CHAPTER 8 
 

Section 8.1 
 
1.  

a. Yes. It is an assertion about the value of a parameter. 
 
b. No. The sample median x is not a parameter. 
 
c. No.  The sample standard deviation s is not a parameter. 
 
d. Yes.  The assertion is that the standard deviation of population #2 exceeds that of population #1. 
 
e. No. X and Y are statistics rather than parameters, so they cannot appear in a hypothesis. 
 
f. Yes.  H is an assertion about the value of a parameter. 

 
 
2.  

a. These hypotheses comply with our rules. 
 
b. Ha cannot include equality (i.e. σ = 20), so these hypotheses are not in compliance. 
 
c. H0 should contain the equality claim, whereas Ha does here, so these are not legitimate. 
 
d. The asserted value of 1 2µ µ− in H0 should also appear in Ha.  It does not here, so our conditions are not 

met. 
 
e. Each S2 is a statistic and so does not belong in a hypothesis. 
 
f. We are not allowing both H0 and Ha to be equality claims (though this is allowed in more 

comprehensive treatments of hypothesis testing). 
 
g. These hypotheses comply with our rules. 
 
h. These hypotheses comply with our rules. 

 
 
3. We reject H0 iff P-value ≤ α = .05. 

a. Reject H0     b. Reject H0     c. Do not reject H0     d. Reject H0     e. Do not reject H0  
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4. We reject H0 iff P-value ≤ α. 

a. Do not reject H0, since .084 > .05. 
 

b. Do not reject H0, since .003 > .001. 
 

c. Do not reject H0, since .498 > .05. 
 

d. Reject H0, since .084 ≤ .10. 
 

e. Do not reject H0, since .039 > .01. 
 

f. Do not reject H0, since .218 > .10. 
 

5. In this formulation, H0 states the welds do not conform to specification.  This assertion will not be rejected 
unless there is strong evidence to the contrary.  Thus the burden of proof is on those who wish to assert that 
the specification is satisfied.  Using Ha: μ < 100 results in the welds being believed in conformance unless 
proved otherwise, so the burden of proof is on the non-conformance claim. 
 
 

6. When the alternative is Ha: μ < 5, the formulation is such that the water is believed unsafe until proved 
otherwise.  A type I error involved deciding that the water is safe (rejecting H0) when it isn’t (H0 is true).  
This is a very serious error, so a test which ensures that this error is highly unlikely is desirable.  A type II 
error involves judging the water unsafe when it is actually safe.  Though a serious error, this is less so than 
the type I error.  It is generally desirable to formulate so that the type I error is more serious, so that the 
probability of this error can be explicitly controlled.  Using Ha: μ > 5, the type II error (now stating that the 
water is safe when it isn’t) is the more serious of the two errors. 

 
 
7. Let σ denote the population standard deviation.  The appropriate hypotheses are H0: σ = .05 v. Ha: σ < .05.   

With this formulation, the burden of proof is on the data to show that the requirement has been met (the 
sheaths will not be used unless H0 can be rejected in favor of Ha.   Type I error: Conclude that the standard 
deviation is < .05 mm when it is really equal to .05 mm.  Type II error: Conclude that the standard 
deviation is .05 mm when it is really < .05. 

 
 
8. H0: μ = 40 v. Ha: μ ≠ 40, where μ is the true average burn-out amperage for this type of fuse.  The 

alternative reflects the fact that a departure from μ = 40 in either direction is of concern.  A type I error 
would say that one of the two concerns exists (either μ < 40 or μ > 40) when, in fact, the fuses are perfectly 
compliant. A type II error would be to fail to detect either of these concerns when one exists. 

 
 
9. A type I error here involves saying that the plant is not in compliance when in fact it is.  A type II error 

occurs when we conclude that the plant is in compliance when in fact it isn’t.  Reasonable people may 
disagree as to which of the two errors is more serious.  If in your judgment it is the type II error, then the 
reformulation H0: μ = 150 v. Ha: μ < 150 makes the type I error more serious. 

 
10. Let μ1 = the average amount of warpage for the regular laminate, and μ2 = the analogous value for the 

special laminate.  Then the hypotheses are H0: μ1 = μ2 v. Ha: μ1 > μ2.  Type I error:  Conclude that the 
special laminate produces less warpage than the regular, when it really does not.  Type II error:  Conclude 
that there is no difference in the two laminates when in reality, the special one produces less warpage. 
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11.  
a. A type I error consists of judging one of the two companies favored over the other when in fact there is 

a 50-50 split in the population.  A type II error involves judging the split to be 50-50 when it is not. 
 
b. We expect 25(.5) = 12.5 “successes” when H0 is true. So, any X-values less than 6 are at least as 

contradictory to H0 as x = 6.  But since the alternative hypothesis states p ≠ .5, X-values that are just as 
far away on the high side are equally contradictory.  Those are 19 and above. 
So, values at least as contradictory to H0 as x = 6 are {0,1,2,3,4,5,6,19,20,21,22,23,24,25}. 
 

c. When H0 is true, X has a binomial distribution with n = 25 and p = .5.  
From part (b), P-value = P(X ≤ 6 or X ≥ 19) = B(6; 25,.5) + [1 – B(18; 25,.5)] = .014. 

 
d. Looking at Table A.1, a two-tailed P-value of .044 (2 × .022) occurs when x = 7. That is, saying we’ll 

reject H0 iff P-value ≤ .044 must be equivalent to saying we’ll reject H0 iff X ≤ 7 or X ≥ 18 (the same 
distance from 12.5, but on the high side). Therefore, for any value of p ≠ .5, β(p) = P(do not reject H0 
when X ~ Bin(25, p)) = P(7 < X < 18 when X ~ Bin(25, p)) = B(17; 25, p) – B(7; 25, p). 
β(.4) = B(17; 25,.4) – B(7, 25,.4) = .845, while β(.3) = B(17; 25, .3) – B(7; 25, .3) = .488. 
By symmetry (or re-computation), β(.6) = .845 and β(.7) = .488. 
 

e. From part (c), the P-value associated with x = 6 is .014.  Since .014 ≤ .044, the procedure in (d) leads 
us to reject H0. 

 
 
12.  

a. H0: μ = 1300 v. Ha: μ > 1300.  
 
b. When H0 is true, X is normally distributed with mean )(E X  = μ = 1300 and standard deviation  

60
10n

σ
= = 18.97. Values more contradictory to H0 (more indicative of Ha) than x = 1340 would be 

anything above 1340. Thus, the P-value is  

P-value = P( X ≥ 1340 when H0 is true) = 1340 1300
18.97

P Z − ≥ 
 

 = 1 – Φ(2.11) = .0174. 

In particular, since .0174 > .01, H0 would not be rejected at the α = .01 significance level. 
 
c. When µ = 1350, X has a normal distribution with mean 1350 and standard deviation 18.97.  

 
To determine β(1350), we first need to figure out the threshold between P-value ≤ α and P-value > α in 
terms of x . Parallel to part (b), proceed as follows: 

.01 = P(reject H0 when H0 is true) = P( X x≥ when H0 is true) = 1300
18.97

1 x −Φ− 
 
 

 ⇒ 

1300 1300.99 2.33 1344.21
18.97 18.97

x x x− − Φ = ⇒ = ⇒ = 
 

. That is, we’d reject H0 at the α = .01 level iff 

the observed value of X  is ≥ 1344.21. 
Finally, β(1350) = P(do not reject H0 when µ = 1350) = P( X  < 1344.21 when µ = 1350) = 

1344.21 1350
18.97

P Z − < 
 

 ≈ Φ(–.31) = .3783. 
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13.  

a. H0: μ = 10 v. Ha: μ ≠ 10. 
 
b. Since the alternative is two-sided, values at least as contradictory to H0 as x  = 9.85 are not only those 

less than 9.85 but also those equally far from µ = 10 on the high side: i.e., x values ≥ 10.15. 

When H0 is true, X  has a normal distribution with mean µ = 10 and sd .200
25n

σ
=  = .04. Hence, 

P-value = P( X ≤ 9.85 or X ≥ 10.15 when H0 is true) = 2P( X  ≤ 9.85 when H0 is true) by symmetry 

= 9.85 102
.04

P Z − < 
 

 = 2Φ(–3.75) ≈ 0. (Software gives the more precise P-value .00018.) 

In particular, since P-value ≈ 0 < α = .01, we reject H0 at the .01 significance level and conclude that 
the true mean measured weight differs from 10 kg. 

 
c. To determine β(µ) for any µ ≠ 10, we must first find the threshold between P-value ≤ α and P-value > 

α in terms of x . Parallel to part (b), proceed as follows: 

.01 = P(reject H0 when H0 is true) = 2P( X x≤ when H0 is true) = 10
.04

2 x − Φ 
 

 ⇒ 

10 10.005 2.58 9.8968
.04 .04

x x x− − Φ = ⇒ = − ⇒ = 
 

. That is, we’d reject H0 at the α = .01 level iff the 

observed value of X  is ≤ 9.8968 — or, by symmetry, ≥ 10 + (10 – 9.8968) = 10.1032. Equivalently, 
we do not reject H0 at the α = .01 level if 10.10329.8968 X << . 
Now we can determine the chance of a type II error: 
β(10.1) = P( 10.10329.8968 X << when µ = 10.1) = P(–5.08 < Z < .08) = .5319. 
Similarly, β(9.8) = P( 10.10329.8968 X << when µ = 9.8) = P(2.42 < Z < 7.58) = .0078. 
 

14.  
a. Let μ = true average braking distance for the new design at 40 mph.   

The hypotheses are H0: μ = 120 v. Ha: μ < 120. 
 
b. Values less than 120 are more contradictory to H0 (more indicative of Ha). In particular, values of X at 

least as contradictory to H0 as x = 117.2 are X ≤ 117.2.  

When H0 is true, X has a normal distribution with mean µ = 120 and sd 10 5
336n

σ
= = .  Therefore, 

P-value = P( X ≤ 117.2 when H0 is true) = 117.2 120
5 / 3

P Z 
 


≤


−  = Φ(–1.68) = .0465. 

In particular, since .0465 ≤ .10, we reject H0 at the .10 significance level and conclude that the new 
design does have a mean braking distance less than 120 feet at 40 mph. 

 
c. Similar to part (c) in the last two exercises, we must find the threshold value of x corresponding to a 

probability of .10: 

.10 = P( X x≤ when H0 is true) = 120
5 / 3

x − Φ 
 

 ⇒ … ⇒ x = 117.867. That is, we reject H0 if and only 

if X ≤ 117.867.  When µ = 115, X is normal with mean 115 and sd 5/3.  Thus,  
P(new design not implemented when µ = 115) = P(do not reject H0 when µ = 115) = β(115)  
=P( X > 117.867 when µ = 115) = P(Z > 1.72) = 1 – Φ(1.72) = .0427. 
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Section 8.2 
 
15. In each case, the direction of Ha indicates that the P-value is P(Z ≥ z) = 1 – Φ(z). 

a. P-value = 1 – Φ(1.42) = .0778.  
 
b. P-value = 1 – Φ(0.90) = .1841. 
 
c. P-value = 1 – Φ(1.96) = .0250. 

 
d. P-value = 1 – Φ(2.48) = .0066. 

 
e. P-value = 1 – Φ(–.11) = .5438.  

 
 
16. The implicit hypotheses are H0: µ = 30 and Ha: µ ≠ 30 (“whether µ differs from the target value”). So, in 

each case, the P-value is 2 · P(Z ≥ |z|) = 2 · [1 – Φ(|z|)]. 
a. P-value = 2 · [1 – Φ(|2.10|)] = .0358. 
 
b. P-value = 2 · [1 – Φ(|–1.75|)] = .0802. 
 
c. P-value = 2 · [1 – Φ(|–0.55|)] = .5824. 

 
d. P-value = 2 · [1 – Φ(|1.41|)] = .1586. 

 
e. P-value = 2 · [1 – Φ(|–5.3|)] ≈ 0. 

 
 
17.  

a. 30,960 30,000 2.56
1500 / 16

z −
= = , so P-value = P(Z ≥ 2.56) = 1 – Φ(2.56) = .0052. 

Since .0052 < α = .01, reject H0. 
 

b. zα = z.01 = 2.33, so ( ) ( )30000 3050030500 2.33 1.00 .8413
1500 / 16

β − = Φ + = Φ = 
 

. 

 

c. zα = z.01 = 2.33 and zβ = z.05 = 1.645. Hence, ( ) 2
1500 2.33 1.645

142.2
30,000 30,500

n
+ 

= = − 
, so use n = 143. 

 
d. From (a), the P-value is .0052. Hence, the smallest α at which H0 can be rejected is .0052. 

 
 
18.  

a. 72.3 75 1.5
1.8
−

= −  so 72.3 is 1.5 SDs (of x ) below 75. 

 
b. P-value = 7( 2.3)XP ≤ = P(Z ≤ –1.5) = .0668. Since .0668 > .002, don’t reject H0. 
 

c. zα = z.002 = 2.88, so β(70) = 75 702.88
9 / 25

1 − Φ − + 
 

−  = 1 – Φ(–0.10) = .5398. 
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d. zβ = z.01 = 2.33. Hence, ( ) 2
9 2.88 2.33

87.95
75 70

n
+ 

= = − 
, so use n  = 88. 

 
e. Zero. By definition, a type I error can only occur when H0 is true, but μ = 76 means that H0 is actually 

false. 
 
19.  

a. Since the alternative hypothesis is two-sided, P-value = 94.32 95
1.20

2
/ 6

1
1

 −
Φ 


 
⋅ − 
 

 = 2 · [1 – Φ(2.27)] = 

2(.0116) = .0232. Since .0232 > α = .01, we do not reject H0 at the .01 significance level. 
 

b. zα/2 = z.005 = 2.58, so ( ) 95 94 95 9494 2.58 2.58
1.20 / 1.201 /6 16

β − −   = Φ + −Φ − +   
   

 = Φ(5.91) – Φ(0.75) = 

.2266.  
 

c. zβ = z.1 = 1.28. Hence, ( ) 2
1.20 2.58 1.28

21.46
95 94

n
+ 

= = − 
, so use n = 22. 

 
 
20. The hypotheses are H0: μ = 750 and Ha: μ < 750. With a P-value of .016, we reject H0 if α = .05 (because 

.016 ≤ .05) but we do not reject H0 if α = .01 (since .016 > .01).   Thus, we do not make the purchase if we 
use α = .05 (the “significant evidence” was observed), and we proceed with the purchase if α = .01.  
 
In this context, a type I error is to reject these new light bulbs when they’re actually as good as advertised, 
while a type II error is to fail to recognize that the new light bulbs underperform (i.e., purchase them even 
though their mean lifetime is less than 750 hours). 
 
Though it’s certainly debatable, given the favorable price a type I error (here, an opportunity loss) might be 
considered more serious. In that case, the lower α level, .01, should be used, and we proceed with the 
purchase. (You could certainly also argue that, price notwithstanding, buying a product that’s less good 
than advertised is ill-advised. In that case, a type II error would be deemed worse, we should use the higher 
α level of .05, and based on the observed data we do not purchase the light bulbs.) 

 
 
21. The hypotheses are H0: μ = 5.5 v. Ha: μ ≠ 5.5. 

a. The P-value is 5.25 5.5
.3 / 16

2 1
 −

Φ
 
⋅ − 



 

 = 2 · [1 – Φ(3.33)] = .0008. Since the P-value is smaller than 

any reasonable significance level (.1, .05, .01, .001), we reject H0.   
 
b. The chance of detecting that H0 is false is the complement of the chance of a type II error. With zα/2 = 

z.005 = 2.58, ( ) 5.5 5.6 5.5 5.61 5.6 1 2.58 2.58
. 16 163 / .3 /

β
 − −   − = − Φ + −Φ − +    

    
= 1 – Φ(1.25) + Φ(3.91) = 

.1056. 
 

c. ( ) 2
.3 2.58 2.33

216.97
5.5 5.6

n
+ 

= = − 
, so use n = 217. 
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22. Let µ denote the true average corrosion penetration under these settings. The hypotheses are H0: µ = 50 

(really, µ ≤ 50) versus Ha: µ > 50. Using the large-sample z test and the information provided, 

P-value = 52.7 50
4.8 / 45

P Z 
 


−


≥  = 1 – Φ(3.77) ≈ .0001.  

Since this P-value is less than any reasonable significance level, we reject H0 and conclude that the true 
mean corrosion penetration definitely exceeds 50 mils, and so these conduits should not be used. 

 
 
23.  

a. Using software, x = 0.75, x~ = 0.64, s = .3025, fs = 0.48.  These summary statistics, as well as a box plot 
(not shown) indicate substantial positive skewness, but no outliers.  

 
b. No, it is not plausible from the results in part a that the variable ALD is normal. However, since n = 

49, normality is not required for the use of z inference procedures. 
 

c. We wish to test H0: μ = 1.0 versus Ha: μ < 1.0. The test statistic is 
49/3025.
0.175.0 −

=z  = –5.79, and so the 

P-value is P(Z ≤ –5.79) ≈ 0. At any reasonable significance level, we reject the null hypothesis. 
Therefore, yes, the data provides strong evidence that the true average ALD is less than 1.0. 

 

d. 
n
szx 05.+ = 

49
3025.645.175.0 + = 0.821 

 
24. Let µ denote the true average estimated calorie content of this 153-calorie beer. The hypotheses of interest 

are H0: μ = 153 v. Ha: μ > 153. Using z-based inference with the data provided, the P-value of the test is 
191 153
89 / 58

P Z 
 


−


≥  = 1 – Φ(3.25) = .0006. At any reasonable significance level, we reject the null 

hypothesis. Therefore, yes, there is evidence that the true average estimated calorie content of this beer 
exceeds the actual calorie content. 

 
 
25. Let µ denote the true average task time. The hypotheses of interest are H0: μ = 2 v. Ha: μ < 2. Using z-based 

inference with the data provided, the P-value of the test is 1.95 2
.20 / 52

P Z 
 


−


≤  = Φ(–1.80) = .0359. Since 

.0359 > .01, at the α = .01 significance level we do not reject H0. At the .01 level, we do not have sufficient 
evidence to conclude that the true average task time is less than 2 seconds. 

 
 
26. The parameter of interest is μ = the true average dietary intake of zinc among males aged 65-74 years. The 

hypotheses are H0: μ = 15 versus Ha: μ < 15.  
Since the sample size is large, we’ll use a z-procedure here; with no significance level specified, we’ll 
default to α = .05.  

From the summary statistics provided, 
11.3 15 6.17

6.43 / 115
z −
= = − , and so P-value = P(Z ≤ –6.17) ≈ 0. Hence, 

we reject H0 at the α = .05 level; in fact, with a test statistic that large, –6.17, we would reject H0 at any 
reasonable significance level. There is convincing evidence that average daily intake of zinc for males aged 
65-74 years falls below the recommended daily allowance of 15 mg/day. 
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27. ( ) ( ) ( )0 /2 /2/ /z n z nα αβ µ σ σ−∆ = Φ + ∆ −Φ − + ∆ /2 /21 ( / ) 1 ( / )z n z nα ασ σ = −Φ − −∆ − −Φ −∆ =   

( ) ( )σσ αα // 2/2/ nznz ∆−−Φ−∆−Φ  ( )0β µ= + ∆ .          
 
 
28. For an upper-tailed test, ( ) ( )( )0 /z nαβ µ µ µ σ= = Φ + − .  Since in this case we are considering 0µ µ> , 

0µ µ−  is negative so ( )0 /n µ µ σ− → −∞  as n →∞ .  The desired conclusion follows since 

( ) 0Φ −∞ = .  The arguments for a lower-tailed and two-tailed test are similar. 
 

Section 8.3 
 
29. The hypotheses are H0: µ = .5 versus Ha: µ ≠ .5. Since this is a two-sided test, we must double the one-tail 

area in each case to determine the P-value. 
a. n = 13 ⇒ df = 13 – 1 = 12. Looking at column 12 of Table A.8, the area to the right of t = 1.6 is .068. 

Doubling this area gives the two-tailed P-value of 2(.068) = .134. Since .134 > α = .05, we do not 
reject H0.  
 

b. For a two-sided test, observing t = –1.6 is equivalent to observing t = 1.6. So, again the P-value is 
2(.068) = .134, and again we do not reject H0 at α = .05. 
 

c. df = n – 1 = 24; the area to the left of –2.6 = the area to the right of 2.6 = .008 according to Table A.8. 
Hence, the two-tailed P-value is 2(.008) = .016. Since .016 > .01, we do not reject H0 in this case.  
 

d. Similar to part (c), Table A.8 gives a one-tail area of .000 for t = ±3.9 at df = 24. Hence, the two-tailed 
P-value is 2(.000) = .000, and we reject H0 at any reasonable α level. 
 

30. The hypotheses are H0: µ = 7.0 versus Ha: µ < 7.0. In each case, we want the one-tail area to the left of the 
observed test statistic. 
a. n = 6 ⇒ df = 6 – 1 = 5. From Table A.8, P(T ≤ –2.3 when T ~ t5) = P(T ≥ 2.3 when T ~ t5) = .035. 

Since .035 ≤ .05, we reject H0 at the α = .05 level. 
 

b. Similarly, P-value = P(T ≥ 3.1 when T ~ t14) = .004. Since .004 < .01, reject H0. 
 

c. Similarly, P-value = P(T ≥ 1.3 when T ~ t11) = .110. Since .110 ≥ .05, do not reject H0. 
 

d. Here, P-value = P(T ≤ .7 when T ~ t5) because it’s a lower tailed test, and this is 1 – P(T > .7 when T ~ 
t5) = 1 – .258 = .742.  Since .742 > .05, do not reject H0.  (Note: since the sign of the t-statistic 
contradicted Ha, we know immediately not to reject H0.) 
 

e. The observed value of the test statistic is 0 6.68 7.0
.0820/

t x
ns
µ −−

= =  = –3.90.  From this, similar to parts 

(a)-(c), P-value = P(T ≥ 3.90 when T ~ t5) = .006 according to Table A.8. We would reject H0 for any 
significance level at or above .006. 
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31. This is an upper-tailed test, so the P-value in each case is P(T ≥ observed t). 

a. P-value = P(T ≥ 3.2 with df = 14) = .003 according to Table A.8. Since .003 ≤ .05, we reject H0. 
 

b. P-value = P(T ≥ 1.8 with df = 8) = .055. Since .055 > .01, do not reject H0. 
 

c. P-value = P(T ≥ –.2 with df = 23) = 1 – P(T ≥ .2 with df = 23) by symmetry = 1 – .422 = .578. Since 
.578 is quite large, we would not reject H0 at any reasonable α level. (Note that the sign of the observed 
t statistic contradicts Ha, so we know immediately not to reject H0.) 
 

32. With H0: .60µ =  v. Ha: .60µ ≠ and a two-tailed P-value of .0711, we fail to reject H0 at levels .01 and .05 
(thus concluding that the amount of impurities need not be adjusted) , but we would reject H0 at level .10 
(and conclude that the amount of impurities does need adjusting). 
 

33.  
a. It appears that the true average weight could be significantly off from the production specification of 

200 lb per pipe.  Most of the boxplot is to the right of 200. 
 
b. Let μ denote the true average weight of a 200 lb pipe. The appropriate null and alternative hypotheses 

are H0: μ = 200 and Ha: μ ≠ 200. Since the data are reasonably normal, we will use a one-sample t 

procedure. Our test statistic is 80.5
16.1
73.6

30/35.6
20073.206

==
−

=t , for a P-value of ≈ 0. So, we reject H0.  

At the 5% significance level, the test appears to substantiate the statement in part a. 
 

34. The data provided has n = 6, x  = 31.233, and s = 0.689. 

a. The hypotheses are H0: µ = 30 versus Ha: µ > 30. The one-sample t statistic is 31.233 30
0. 9 / 668

t −
=  = 4.38. 

At df = 6 – 1 = 5, the P-value is P(T ≥ 4.38) = .004 from software. Since .004 ≤ .01, we reject H0 at the 
α = .01 level and conclude the true average stopping distance does exceed 30 ft. 
 

b. Using statistical software, the power of the test (with n = 6, α = .01, and σ = .65) is .660 when µ = 31 
and .998 when µ = 32. The corresponding chances of a type II error are β(31) = 1 – .660 = .340 and 
β(32) = 1 – .998 = .002. 
 

c. Changing σ from .65 to .80 results in β(31) = 1 – .470 = .530 and β(32) = 1 – .975 = .025. It’s still the 
case, as it should be, that type II error is less likely when the true value of µ is farther from µ0. But, 
with the larger standard deviation, random sampling variation makes it more likely for the sample 
meant to deviate substantially from µ and, in particular, trick us into thinking H0 might be plausible 
(even though it’s false in both cases). We see β increase from .340 to .530 when µ = 31 and from .002 
to .025 when µ = 32. 
  

d. According to statistical software, n = 9 will suffice to achieve β = .1 (power = .9) when α = .01, µ = 31, 
and σ = .65. 
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35.  

a. The hypotheses are H0: μ = 200 versus Ha: μ > 200. With the data provided, 
0 249.7 20

/
0 1.2

145.1/ 12
t

ns
x µ− −

= == ; at df = 12 – 1 = 11, P-value =  .128. Since .128 > .05, H0 is not rejected 

at the α = .05 level. We have insufficient evidence to conclude that the true average repair time 
exceeds 200 minutes.  
 

b. With 0 200 300
0.67

150
d

µ µ
σ
− −

= = = , df = 11, and α = .05, software calculates power ≈ .70, so  

β(300) ≈ .30. 
 

36. 10% of 6 oz. is 0.6 oz. So, the hypotheses of interest are H0: μ = 0.6 versus Ha: μ < 0.6, where μ denotes the 
true average amount left in a 6 oz. tube of toothpaste. 
a. The 5 tubes were randomly selected. Although we don’t have much power with n = 5 to detect 

departures from normality, the probability plot below suggest the data are consistent with a normally 
distributed population. So, we are comfortable proceeding with the t procedure. 
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b. The test statistic is 0 .502 .6 2.14
.1023 / 5/

t
s
x

n
µ− −

= = −= . At df = 5 – 1 = 4, P-value = P(T ≤ –2.14 at df=4) = 

P(T ≥ 2.14 at df = 4) ≈ .049 from software.   We (barely) reject H0 at the α = .05 significance level, 
because .049 ≤ .05; however, we fail to reject H0 at the α = .01 level, because .049 > .01. So, we have 
evidence that the true average content is less than 10% of the original 6 oz at the 5% significance level, 
but not at the 1% significance level. 
 

c. In this context, a Type I error would be to conclude that less than 10% of the tube’s contents remain 
after squeezing, on average, when in fact 10% (or more) actually remains. When we rejected H0 at the 
5% level, we may have committed a Type I error. A Type II error occurs if we fail to recognize that 
less than 10% of a tube’s contents remains, on average, when that’s actually true (i.e., we fail to reject 
the false null hypothesis of μ = 0.6 oz). When we failed to reject H0 at the 1% level, we may have 
committed a Type II error. 
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37.  

a. The accompanying normal probability plot is acceptably linear, which suggests that a normal 
population distribution is quite plausible. 
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b. The parameter of interest is μ = the true average compression strength (MPa) for this type of concrete. 
The hypotheses are H0: μ = 100 versus Ha: μ < 100. 
Since the data come from a plausibly normal population, we will use the t procedure. The test statistic 

is 0 96.42 100 1.37
/ 8.26 / 10

t
s
x

n
µ −

= = = −
− . The corresponding one-tailed P-value, at df = 10 – 1 = 9, is  

P(T ≤ –1.37) ≈ .102.  
The P-value slightly exceeds .10, the largest α level we’d consider using in practice, so the null 
hypothesis H0: μ = 100 should not be rejected. This concrete should be used. 

 
38. μ = the true average percentage of organic matter in this type of soil, and the hypotheses are H0: μ = 3 

versus Ha: μ ≠ 3.  With n = 30, and assuming normality, we use the t test:  
3 2.481 3 .519 1.759

.295 .295/
xt

s n
− − −

= = = = − .  At df = 30 – 1 = 29, P-value = 2P(T > 1.759) = 2(.041) = .082.  

At significance level .10, since .082 ≤ .10, we would reject H0 and conclude that the true average 
percentage of organic matter in this type of soil is something other than 3.  At significance level .05, we 
would not have rejected H0. 

 
39. Software provides x = 1.243 and s = 0.448 for this sample. 

a. The parameter of interest is μ = the population mean expense ratio (%) for large-cap growth mutual 
funds. The hypotheses are H0: μ = 1 versus Ha: μ > 1. 
We have a random sample, and a normal probability plot is reasonably linear, so the assumptions for a 
t procedure are met. 

The test statistic is 
1.243 1 2.43

0.448 / 20
t −
= = , for a P-value of P(T ≥ 2.43 at df = 19) ≈ .013. Hence, we 

(barely) fail to reject H0 at the .01 significance level. There is insufficient evidence, at the α = .01 level, 
to conclude that the population mean expense ratio for large-cap growth mutual funds exceeds 1%.  
 

b. A Type I error would be to incorrectly conclude that the population mean expense ratio for large-cap 
growth mutual funds exceeds 1% when, in fact the mean is 1%. A Type II error would be to fail to 
recognize that the population mean expense ratio for large-cap growth mutual funds exceeds 1% when 
that’s actually true.  
Since we failed to reject H0 in (a), we potentially committed a Type II error there. If we later find out 
that, in fact, μ = 1.33, so Ha was actually true all along, then yes we have committed a Type II error. 
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c. With n = 20 so df = 19, d = 
1.33 1 .66

.5
−

= , and α = .01, software provides power ≈ .66. (Note: it’s 

purely a coincidence that power and d are the same decimal!) This means that if the true values of μ 
and σ are μ = 1.33 and σ = .5, then there is a 66% probability of correctly rejecting H0: μ = 1 in favor of 
Ha: μ > 1 at the .01 significance level based upon a sample of size n = 20. 

 
40. The hypotheses are H0: μ = 48 versus Ha: μ > 48. Using the one-sample t procedure, the test statistic and P-

value are 51.3 48
1. / 102

t −
=  = 8.7 and P(T ≥ 8.7 when df = 9) ≈ 0. Hence, we reject H0 at any reasonable 

significance level and conclude that the true average strength for the WSF/cellulose composite definitely 
exceeds 48 MPa. 
 

41. μ = true average reading, H0: 70µ =  v. Ha: 70µ ≠ , and 70 75.5 70 5.5 1.92
2.86/ 7 / 6

xt
s n
− −

= = = = .   

From table A.8, df = 5, P-value = 2[P(T > 1.92)] ≈ 2(.058) = .116.  At significance level .05, there is not 
enough evidence to conclude that the spectrophotometer needs recalibrating. 

 

Section 8.4 
 
 
42. In each instance, the P-value must be calculated in accordance with the inequality in Ha. 

a. Upper-tailed test: P-value = P(Z ≥ 1.47) = 1 – Φ(1.47) = .0708. 
 

b. Lower-tailed test: P-value = P(Z ≤ –2.70) = Φ(–2.70) = .0035. 
 

c. Two-tailed test: P-value = 2 · P(Z ≥ |–2.70|) = 2(.0035) = .0070. 
 

d. Lower-tailed test: P-value = P(Z ≤ 0.25) = Φ(0.25) = .5987. 
 

43.  
a. The parameter of interest is p = the proportion of the population of female workers that have BMIs of 

at least 30 (and, hence, are obese). The hypotheses are H0: p = .20 versus Ha: p > .20. 
With n = 541, np0 = 541(.2) = 108.2 ≥ 10 and n(1 – p0) = 541(.8) = 432.8 ≥ 10, so the “large-sample” z 
procedure is applicable.  

From the data provided, 
120ˆ .2218
541

p = = , so 0

0 0

.2218 .20 1.27
.20(.8

ˆ
0(1 ) / ) / 541

z p p
p p n

−
=

−
−

= =  and P-value 

= P(Z ≥ 1.27) = 1 – Φ(1.27) = .1020. Since .1020 > .05, we fail to reject H0 at the α = .05 level. We do 
not have sufficient evidence to conclude that more than 20% of the population of female workers is 
obese. 
 

b. A Type I error would be to incorrectly conclude that more than 20% of the population of female 
workers is obese, when the true percentage is 20%. A Type II error would be to fail to recognize that 
more than 20% of the population of female workers is obese when that’s actually true.  
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c. The question is asking for the chance of committing a Type II error when the true value of p is .25, i.e. 

β(.25). Using the textbook formula, 
.20 .25 1.645 .20(.80) / 541

(.25) ( 1.166)
.25(.75) / 541

β
 − +

= Φ = Φ − 
  

≈ .121. 

 
44.  

a. Let p = true proportion of all nickel plates that blister under the given circumstances. The hypotheses 
are H0: p = .10 versus Ha: p > .10. Using the one-proportion z procedure, the test statistic is 

( )
14 /100 .10 1.33
.10 .90 /100

z −
= = and the P-value is P(Z ≥ 1.33) = 1 – Φ(1.33) = .0918. Since .0918 > .05, we 

fail to Reject H0.  The data does not give compelling evidence for concluding that more than 10% of all 
plates blister under the circumstances. 
 
The possible error we could have made is a Type II error:  failing to reject the null hypothesis when it 
is actually true. 
 

b. ( ) ( )
( )

( )
.10 .15 1.645 .10 .90 /100

.15 .02 .4920
.15 .85 /100

β
 − +
 = Φ = Φ − =
  

.  When n = 200, 

( ) ( )
( )

( )
.10 .15 1.645 .10 .90 / 200

.15 .60 .2743
.15 .85 / 200

β
 − +
 = Φ = Φ − =
  

 

 

c. 
( ) ( )

2

21.645 .10 .90 1.28 .15 .85
19.01 361.4

.15 .10
n

 +
 = = =

−  
, so use n = 362. 

 
45. Let p = true proportion of all donors with type A blood. The hypotheses are H0: p = .40 versus Ha: p ≠ .40. 

Using the one-proportion z procedure, the test statistic is 
( )

82 /150 .40 .147 3.667
.04.40 .60 /150

z −
= = = , and the 

corresponding  P-value is 2P(Z ≥ 3.667) ≈ 0. Hence, we reject H0.  The data does suggest that the 
percentage of all donors with type A blood differs from 40%. (at the .01 significance level).  Since the P-
value is also less than .05, the conclusion would not change. 

 
46.  

a. Let X = the number of couples who lean more to the right when they kiss. If n = 124 and p = 2/3, then 
E[X] = 124(2/3) = 82.667. The researchers observed x = 80, for a difference of 2.667.  The probability 
in question is P(|X – 82.667| ≥ 2.667) = P(X ≤ 80 or X ≥ 85.33) = P(X ≤ 80) + [1 – P(X ≤ 85)] = 
B(80;124,2/3) + [1 – B(85;124,2/3)] = 0.634. (Using a large-sample z-based calculation gives a 
probability of 0.610.) 

 

b. We wish to test H0: p = 2/3 v. Ha: p ≠ 2/3. From the data, 645.
124
80ˆ ==p , so our test statistic is 

124/)333(.667.
667.645. −

=z = –0.51.  We would fail to reject H0 even at the α = .10 level, since the two-

tailed P-value is quite large.  There is no statistically significant evidence to suggest the p = 2/3 figure 
is implausible for right-leaning kissing behavior. 
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47.  

a. The parameter of interest is p = the proportion of all wine customers who would find screw tops 
acceptable. The hypotheses are H0: p = .25 versus Ha: p < .25.  
With n = 106, np0 = 106(.25) = 26.5 ≥ 10 and n(1 – p0) = 106(.75) = 79.5 ≥ 10, so the “large-sample” z 
procedure is applicable.  

From the data provided, 
22

10
ˆ 2 8

6
. 0p = = , so .208 .25 1.01

.25(.75) /106
z −
= = −  and P-value = P(Z ≤ –1.01) = 

Φ(–1.01) = .1562. 
Since .1562 > .10, we fail to reject H0 at the α = .10 level. We do not have sufficient evidence to 
suggest that less than 25% of all customers find screw tops acceptable. Therefore, we recommend that 
the winery should switch to screw tops. 
 

b. A Type I error would be to incorrectly conclude that less than 25% of all customers find screw tops 
acceptable, when the true percentage is 25%. Hence, we’d recommend not switching to screw tops 
when there use is actually justified. A Type II error would be to fail to recognize that less than 25% of 
all customers find screw tops acceptable when that’s actually true. Hence, we’d recommend (as we did 
in (a)) that the winery switch to screw tops when the switch is not justified. Since we failed to reject H0 
in (a), we may have committed a Type II error. 

 
48.  

a. The parameter of interest is p = the proportion of all households with Chinese drywall that have 
electrical/environmental problems. The hypotheses are H0: p = .5, Ha: p > .5.  
With n = 51, np0 = n(1 – p0) = 51(.5) = 25.5 ≥ 10, so the “large-sample” z procedure is applicable.  

From the data provided, 
41
51

ˆ .804p = = , so .804 .5 4.34
.5(.5) / 51

z −
= =  and P-value = P(Z ≥ 4.34) ≈ 0. 

Thus, we reject H0 at the α = .01 level. We have compelling evidence that more than 50% of all 
households with Chinese drywall that have electrical/environmental problems. 
 

b. From Chapter 7, a 99% lower confidence bound for p is  
2 22 2

2 2

2.33.804 2.33 (.804)(.196) / 51 (2.33) / 4(51)ˆ ˆ ˆ / / 4 2(
1 1

51)2
(2/ / 51.33)

zp z pq n z n
n

z n

α
α α

α

+ −

+

+
=

+

+ − +
= .648. That is, 

we’re 99% confident that more than 64.8% of all homes with Chinese drywall have 
electrical/environmental problems. 
 

c. The goal is to find the chance of a Type II error when the actual value of p is .80; i.e., we wish to find 
β(.80). Using the textbook formula, 

.50 .80 2.33 .50(.50) / 51
(.80) ( 2.44)

.80(.20) / 51
β

 − +
= Φ = Φ − 

  
≈ .007. 
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49.  

a. Let p = true proportion of current customers who qualify. The hypotheses are H0: p = .05 v. Ha: p ≠ .05. 

The test statistic is 
( )

.08 .05
.05 .95 /

z
n

−
= = 3.07, and the P-value is 2 · P(Z ≥ 3.07) = 2(.0011) = .0022. 

Since .0022 ≤ α = .01, H0 is rejected.  The company’s premise is not correct. 
 

b. ( ) ( )
( )

( )
( )

.05 .10 2.58 .05 .95 / 500 .05 .10 2.58 .05 .95 / 500
.10

.10 .90 / 500 .10 .90 / 500
β

   − + − −
   = Φ −Φ
      

 

( )1.85 0≈ Φ − − = .0332 
 
 
50. Notice that with the relatively small sample size, we should use a binomial model here. 

a. The alternative of interest here is Ha: p > .50 (which states that more than 50% of all enthusiasts prefer 
gut). So, we’ll reject H0 in favor of Ha when the observed value of X is quite large (much more than 
10). Suppose we reject H0 when X ≥ x; then α = P(X ≥ x when H0 is true) = 1 – B(x – 1; 20, .5), since      
X ~ Bin(20, .5) when H0 is true. 
 
By trial and error, α = .058 if x = 14 and α = .021 if x = 15.  Therefore, a significance level of exactly  
α = .05 is not possible, and the largest possible value less than .05 is α = .021 (occurring when we elect 
to reject H0 iff X ≥ 15).  

 
b. β(.6) = P(do not reject H0 when p = .6) = P(X < 15 when X ~ Bin(20,.6)) = B(14; 20, .6) = .874. 

Similarly, β(.8) = B(14; 20, .8) = .196. 
 
c. No. Since 13 is not ≥ 15, we would not reject H0 at the α = .021 level. Equivalently, the P-value for 

that observed count is P(X ≥ 13 when p = .5) = 1 – P(X ≤ 12 when X ~ Bin(20,.5)) = .132. Since .132 > 
.021, we do not reject H0 at the .021 level (or at the .05 level, for that matter). 

 
 
51. The hypotheses are H0: p = .10 v. Ha: p > .10, and we reject H0 iff X ≥ c for some unknown c.  The 

corresponding chance of a type I error is α = P(X ≥ c when p = .10) = 1 – B(c – 1; 10, .1), since the rv X has 
a Binomial(10, .1) distribution when H0 is true. 
The values n = 10, c = 3 yield α = 1 – B(2; 10, .1) = .07, while α > .10 for c = 0, 1, 2. Thus c = 3 is the best 
choice to achieve α ≤ .10 and simultaneously minimize β. However, β(.3) = P(X < c when p = .3) =          
B(2; 10, .3) = .383, which has been deemed too high. So, the desired α and β levels cannot be achieved with 
a sample size of just n = 10.   
The values n = 20, c = 5 yield α = 1 – B(4; 20, .1) = .043, but again β(.3) = B(4; 20, .3) = .238 is too high.  
The values n = 25, c = 5 yield α = 1 – B(4; 25, .1) = .098 while β(.3) = B(4; 25, .3) = .090 ≤ .10, so n = 25 
should be used. In that case and with the rule that we reject H0 iff X ≥ 5, α = .098 and β(.3) = .090. 

 
52. Let p denote the proportion of all students that do not share this belief (i.e., that do not think the software 

unfairly targets students. The hypotheses of interest are H0: p = .5 v. Ha: p > .5 (majority).   
The sample proportion of students that do not share this belief is p̂   = (171 – 58)/171 = .661. The test 

statistic is 
.5
.

(.5) /171
661 .5z −

=  = 4.21, and the P-value is P(Z ≥ 4.21) ≈ 0. Thus, we strongly reject H0 and 

conclude that a majority of all students do not share the belief that the plagiarism-detection software 
unfairly targets students. 
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Section 8.5 
 
53.  

a. The formula for β is 









+−Φ−

9
33.21 n , which gives .8888 for n = 100, .1587 for n = 900, and .0006 

for n = 2500. 
 
b. Z = –5.3, which is “off the z table,” so P-value < .0002; this value of z is quite statistically significant. 
 
c. No.  Even when the departure from H0 is insignificant from a practical point of view, a statistically 

significant result is highly likely to appear; the test is too likely to detect small departures from H0. 
 
54.  

a. Here .01 .9320 / .01 .9320
.4073.4073 /

n n
n

β
   − + − +

= Φ = Φ      
   

= .9793, .8554, .4325, .0944, and 0 for n = 100, 

2500, 10,000, 40,000, and 90,000, respectively. 
 
b. Here .025z n=  which equals .25, 1.25, 2.5, and 5 for the four n’s, whence P-value = .4213, .1056, 

.0062, .0000, respectively. 
 
c. No. Even when the departure from H0 is insignificant from a practical point of view, a statistically 

significant result is highly likely to appear; the test is too likely to detect small departures from H0. 
 

55.  
a. The chance of committing a type I error on a single test is .01. Hence, the chance of committing at 

least one type I error among m tests is P(at least on error) = 1 – P(no type I errors) = 1 –[P(no type I 
error)]m by independence = 1 – .99m. For m = 5, the probability is .049; for m = 10, it’s .096. 
 

b. Set the answer from (a) to .5 and solve for m: 1 – .99m ≥ .5 ⇒ .99m ≤ .5 ⇒ m ≥ log(.5)/log(.99) = 68.97. 
So, at least 69 tests must be run at the α = .01 level to have a 50-50 chance of committing at least one 
type I error. 
 

56.  
a. A two-sided 95% confidence interval is equivalent to a two-sided hypothesis test with significance 

level α = 100% – 95% = .05. In particular, since the null value of 2 is not in the 95% CI for µ, we 
conclude at the .05 level that H0 should be rejected, i.e., Ha: µ ≠ 2 is concluded. 
 

b. We now need a 99% CI for µ (which might turn out to contain 2). The sample mean must be the 
midpoint of the interval: x = 1.88. The margin of error is t.025,14 · se = .07, so se = .07/2.145. Thus, a 
99% CI for µ is 1.88 ± t.005,14 · se = 1.88 ± 2.977(.07/2.145) = 1.88 ± .097 = (1.783, 1.977). Since this 
99% CI for µ does not contain 2, we still reject H0: µ = 2 and conclude that µ ≠ 2. 
 
Alternatively, use the mean and standard error above to perform the actual test.  The test statistic is 

0 1.88 2
(.07 / 2.145)

t
s

x
e
µ −

=
−

=  = –3.7. At 14 df, the two-tailed P-value is 2(.001) = .002 from Table A.8. 

Since this P-value is less that α = .01, we reject H0. 
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Supplementary Exercises 
 
57. Because n = 50 is large, we use a z test here. The hypotheses are H0: 3.2µ =  versus Ha: 3.2µ ≠ . The 

computed z value is 12.3
50/34.

20.305.3
−=

−
=z , and the P-value is 2 P(Z ≥ |–3.12|) = 2(.0009) = 0018.  Since 

.0018 < .05, H0 should be rejected in favor of Ha. 
 
 
58. Here we assume that thickness is normally distributed, so that for any n a t test is appropriate, and use 

Table A.17 to determine n.  We wish ( ) 05.3 =β  when .667.
3.

32.3
=

−
=d  By inspection, df = 29 (n = 30) 

satisfies this requirement, so n = 50 is unnecessarily large. 
 
 
59.  

a. H0: μ = .85 v. Ha: μ ≠ .85  
 
b. With a P-value of .30, we would reject the null hypothesis at any reasonable significance level, which 

includes both .05 and .10. 
 
 
60.  

a. H0: 2150=µ  v. Ha: 2150>µ  
 

b. 
ns

xt
/
2150−

=  

 

c. 33.1
5.7

10
16/30
21502160

==
−

=t  

 
d. At 15df, P-value = P(T > 1.33) = .107 (approximately) 
 
e. From d, P-value > .05, so H0 cannot be rejected at this significance level. The mean tensile strength for 

springs made using roller straightening is not significantly greater than 2150 N/mm2. 
 
 
61.  

a. The parameter of interest is μ = the true average contamination level (Total Cu, in mg/kg) in this 
region. The hypotheses are H0: μ = 20 versus Ha: μ > 20. Using a one-sample t procedure, with x = 

45.31 and SE( x ) = 5.26, the test statistic is 
45.31 20

5.26
t −
= = 3.86. That’s a very large t-statistic; 

however, at df = 3 – 1 = 2, the P-value is P(T ≥ 3.86) ≈ .03. (Using the tables with t = 3.9 gives a P-
value of ≈ .02.) Since the P-value exceeds .01, we would fail to reject H0 at the α = .01 level.  
This is quite surprising, given the large t-value (45.31 greatly exceeds 20), but it’s a result of the very 
small n. 
 

b. We want the probability that we fail to reject H0 in part (a) when n = 3 and the true values of μ and σ 
are μ = 50 and σ = 10, i.e. β(50). Using software, we get β(50) ≈ .57. 
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62. The data provide 8, 30.7875, 6.5300n x s= = = . The parameter of interest is μ = true average heat-flux of 

plots covered with coal dust, and the hypotheses are H0: μ = 29.0 versus Ha: μ > 29.0. The test statistic 

equals 30.7875 29.0 .7742
6.53 / 8

t −
= = ; at df = 8 – 1 = 7, the P-value is roughly P(T ≥ .8) = .225. Since .225 > 

.05, we fail to reject H0.  The data does not indicate the mean heat-flux for pots covered with coal dust is 
greater than for plots covered with grass. 
 

63. n= 47, 215x =  mg, s = 235 mg, scope of values = 5 mg to 1,176 mg 
a. No, the distribution does not appear to be normal. It appears to be skewed to the right, since 0 is less 

than one standard deviation below the mean.  It is not necessary to assume normality if the sample size 
is large enough due to the central limit theorem.  This sample size is large enough so we can conduct a 
hypothesis test about the mean. 

 
b. The parameter of interest is µ = true daily caffeine consumption of adult women, and the hypotheses 

are H0: μ = 200 versus Ha: μ > 200. The test statistic (using a z test) is 215 200 .44
235 / 47

z −
= = with a 

corresponding P-value of P(Z ≥ .44) = 1 – Φ(.44) = .33. We fail to reject H0, because .33 > .10. The 
data do not provide convincing evidence that daily consumption of all adult women exceeds 200 mg. 

 
64.  

a. No. The accompanying normal probability plot shows a substantial departure from linearity, so it 
would be unrealistic to assume the population of turnover ratios has a normal distribution. Moreover, 
since the sample size is small (n = 20), we cannot invoke a central limit theorem argument in order to 
use z or t procedures. 
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b. Let μ denote the mean (and median) of ln(X), so eμ is the median of X. The median turnover is 100% = 
1, i.e. eμ = 1, iff μ = ln(1) = 0. So, we’ll use the 20 ln(x) data values to test the hypotheses H0: μ = 0 
versus Ha: μ < 0. 
Let y = ln(x). From software, y = –0.026 and sy = 0.652, resulting in a test statistic of 

0 0.026 0
0.652 // 20y

yt
s n

µ− − −
= = = –0.18. At df = 20 – 1 = 19, this gives a P-value of .43, so we’d fail to 

reject H0 at any reasonable significance level. There is no statistically significant evidence to suggest 
the true median turnover for this type of fund is less than 100%. 
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65.  

a. From Table A.17, when μ = 9.5, d = .625, and df = 9, β ≈ .60.  
When μ = 9.0, d = 1.25, and df = 9, β ≈ .20. 

 
b. From Table A.17, when 25.=β  and d = .625, n 28≈ . 

 
66. A normality plot reveals that these observations could have come from a normally distributed population, 

therefore a t-test is appropriate.  The relevant hypotheses are H0: μ = 9.75 v. Ha: μ > 9.75.  Summary 

statistics are n = 20, 9.8525x = , and s = .0965, which leads to a test statistic 9.8525 9.75 4.75
.0965 / 20

t −
= = , 

from which the P-value ≈ 0.  With such a small P-value, the data strongly supports the alternative 
hypothesis.  The condition is not met. 

 
67.  

a. With H0: p = 1/75 v. Ha: p ≠ 1/75, 02.
800
16ˆ ==p , 

( )
645.1

800
98667.01333.

01333.02.
=

−z , and P-value = .10, we 

fail to reject the null hypothesis at the α = .05 level.  There is no significant evidence that the incidence 
rate among prisoners differs from that of the adult population.   
 
The possible error we could have made is a type II. 

 
b. P–value = ( )[ ] [ ] 10.05.2645.112 ==Φ− .  Yes, since .10 < .20, we could reject H0. 

 
 
68. A t test is appropriate. H0: μ = 1.75 is rejected in favor of Ha: μ ≠ 1.75 if the P-value < .05.  The computed 

test statistic is 1.89 1.75 1.70
.42 / 26

t −
= = .  Since the P-value is 2P(T > 1.7) = 2(.051) = .102 > .05, do not reject 

H0; the data does not contradict prior research.   
We assume that the population from which the sample was taken was approximately normally distributed. 
 

 
69. Even though the underlying distribution may not be normal, a z test can be used because n is large.  The 

null hypothesis H0: μ = 3200 should be rejected in favor of Ha: μ < 3200 if the P-value is less than .001.  

The computed test statistic is 3107 3200 3.32
188 / 45

z −
= = −  and the P-value is Φ(–3.32) = .0005 < .001, so H0 

should be rejected at level .001. 
 
 
70. Let p = the true proportion of all American adults that want to see the BCS replaced by a playoff system. 

The hypotheses of interest are H0: p = .5 versus Ha: p > .5. 
With n = 948, np0 = n(1 – p0) = 948(.5) = 474 ≥ 10, so the “large-sample” z procedure is applicable.  

From the data provided, 
597ˆ
948

p = = .6297, so .6297 .5
.5(1 .5) / 948

z −
=

−
= 7.99. The corresponding upper-tailed  

P-value is P(Z ≥ 7.99) = 1 – Φ(7.99) ≈ 1 – 1 = 0. That is, assuming exactly 50% of the population wants to 
replace BCS by a playoff system, there is almost no chance of getting a sample proportion as large as ~63% 
in a sample of 948 people. 
Therefore, we strongly reject H0. There is compelling evidence to suggest that a majority of American 
adults want to switch the BCS for a playoff system. 
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71. We wish to test H0: μ = 4 versus Ha: μ > 4 using the test statistic
4

4 /
xz

n
−

= .  For the given sample, n = 36 

and 444.4
36

160
==x , so 33.1

36/4
4444.4
=

−
=z .   

The P-value is P(Z ≥ 1.33) = 1 – Φ(1.33) = .0918. Since .0918 > .02, H0 should not be rejected at this level. 
We do not have significant evidence at the .02 level to conclude that the true mean of this Poisson process 
is greater than 4. 

 
72. Note: It is not reasonable to use a z test here, since the values of p are so small. 

a. Let p = the proportion of all mis-priced purchases at all California Wal-Mart stores. We wish to test the 
hypotheses H0: p = .02 v. Ha: p > .02.  
Let X = the number of mis-priced items in 200, so X ~ Bin(200,.02) under the null hypothesis. The test 
procedure should reject H0 iff X is too large, i.e., X ≥ x for some “critical value” x.  
 
The value x should satisfy P(X ≥ x) = .05 as closely as possible; P(X ≥ 8) = .0493, so we will use x = 8 
and reject H0 iff X ≥ 8. For our data, the observed value of X is .083(200) = 16.6 ≈ 17, so we clearly 
reject H0 here and conclude that the NIST benchmark is not satisfied.  

 
b. If p = 5% in fact, so that X ~ Bin(200,.05), then P(Reject H0) = P(X ≥ 8) = 1 – P(X ≤ 7) =               

1 – B(7;200,.05) = .7867. We have decent power to detect p = 5%. 
 
73. The parameter of interest is p = the proportion of all college students who have maintained lifetime 

abstinence from alcohol. The hypotheses are H0: p = .1, Ha: p > .1.  
With n = 462, np0 = 462(.1) = 46.2 ≥ 10 n(1 – p0) = 462(.9) = 415.8 ≥ 10, so the “large-sample” z procedure 
is applicable.  

From the data provided, 
51

462
ˆ .1104p = = , so .1104 .1 0.74

.1(.9) / 462
z −
= = .  

The corresponding one-tailed P-value is P(Z ≥ 0.74) = 1 – Φ(0.74) = .2296. 
Since .2296 > .05, we fail to reject H0 at the α = .05 level (and, in fact, at any reasonable significance level). 
The data does not give evidence to suggest that more than 10% of all college students have completely 
abstained from alcohol use. 

 
 
74. By guessing alone, the taster has a 1/3 chance of selecting the “different” wine. Hence, we wish to test    

H0: p= 1/3 v. Ha: p > 1/3. With 
855
346ˆ =p = .4047, our test statistic is 

855/)6667(.3333.
3333.4047. −

=z = 4.43, and 

the corresponding P-value is P(Z ≥ 4.43) ≈ 0. Hence, we strongly reject the null hypothesis at any 
reasonable significance level and conclude that the population of wine tasters have the ability to distinguish 
the “different” wine out of three more than 1/3 of the time. 
 

75. Since n is large, we’ll use the one-sample z procedure. With µ = population mean Vitamin D level for 

infants, the hypotheses are H0: µ = 20 v. Ha: µ > 20. The test statistic is 21 20
11 102/

z −
=  = 0.92, and the 

upper-tailed P-value is P(Z ≥ 0.92) = .1788. Since .1788 > .10, we fail to reject H0. It cannot be concluded 
that µ > 20. 
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76. The hypotheses of interest are H0: σ = .50 versus Ha: σ > .50.  The test statistic value is (10 – 1)(.58)2/(.5)2 = 
12.11.  The P-value is the area under the χ2 curve with 9 df to the right of 12.11; with the aid of software, 
that’s roughly .2.  Because .2 > .01, H0 cannot be rejected.  The uniformity specification is not contradicted. 

 
77. The 20 df row of Table A.7 shows that 2

.99,20 8.26 8.58χ = <  (H0 not rejected at level .01) and 
2
.975,208.58 9.591 χ< =  (H0 rejected at level .025).  Thus .01 < P-value < .025, and H0 cannot be rejected at 

level .01 (the P-value is the smallest α at which rejection can take place, and this exceeds .01). 
 
 
78.  

a. ( )2.33 ( ) 2.33 ( ) 2.33E X S E X E S µ σ+ = + ≈ + , so ˆ 2.33X Sθ = +  is approximately unbiased. 
 

b. ( )
2 2

22.33 ( ) 2.33 ( ) 5.4289
2

V X S V X V S
n n
σ σ

+ = + ≈ + .  The estimated standard error (standard 

deviation) is 1.927 s
n

. 

 
c. More than 99% of all soil samples have pH less than 6.75 iff the 99th percentile is less than 6.75.  Thus 

we wish to test H0: 2.33 6.75µ σ+ = versus Ha: 2.33 6.75µ σ+ < .   

Since ( 2.33 ) 6.75 .047 1.22
.03851.927 /

x sz
s n

+ − −
= = = −  and P-value = P(Z ≤ –1.22) = .1112 > .01, H0 is not 

rejected at the .01 level.  The 99th percentile does not significantly exceed 6.75. 
 
79.  

a. When H0 is true, 0
0

22 i iX X
µ

λ Σ = ∑  has a chi-squared distribution with df = 2n.  If the alternative is  

Ha: μ < μ0, then we should reject H0 in favor of Ha when the sample mean x is small. Since x is small 
exactly when ixΣ is small, we’ll reject H0 when the test statistic is small. In particular, the P-value 

should be the area to the left of the observed value 
0

2
ix

µ ∑ . 

 

b. The hypotheses are H0: μ = 75 versus Ha: μ < 75.  The test statistic value is 
0

2 (737)
7

2
5ix

µ
=∑  = 

19.65.  At df = 2(10) = 20, the P-value is the area to the left of 19.65 under the 2
20χ  curve. From 

software, this is about .52, so H0 clearly should not be rejected (the P-value is very large).  The sample 
data do not suggest that true average lifetime is less than the previously claimed value. 

 
 
80.  

a. For testing H0: p = .2 v. Ha: p > .2, an upper-tailed test is appropriate.  The computed Z is z = .97, so 
the P-value = 1 – Φ(.97) = .166.  Because the P-value is rather large, H0 would not be rejected at any 
reasonable α (it can’t be rejected for any α < .166), so no modification appears necessary. 

 
b. With p = .5, ( ) ( )( ) ( )1 .5 1 .3 2.33 .0516 / .0645 1 2.79 .9974β  − = −Φ − + = −Φ − =  . 
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CHAPTER 9 
 
Section 9.1 
 
1.  

a. ( ) ( ) ( ) 4.1 4.5 .4E X Y E X E Y− = − = − = − , irrespective of sample sizes. 
 

b. ( ) ( ) ( ) ( ) ( )2 22 2
1 2 1.8 2.0

.0724
100 100

V X Y V X V Y
m n
σ σ

− = + = + = + = , and the SD of X Y− is 

.0724 .2691X Y− = = . 
 
c. A normal curve with mean and sd as given in a and b (because m = n = 100, the CLT implies that both 

X  and Y  have approximately normal distributions, so X Y−  does also).  The shape is not 
necessarily that of a normal curve when m = n = 10, because the CLT cannot be invoked.  So if the two 
lifetime population distributions are not normal, the distribution of X Y−  will typically be quite 
complicated. 

 
 
2.  

a. With large sample sizes, a 95% confidence interval for the difference of population means, μ1 – μ2, is 
2 2

2 21 2
/2( ( 1.96 [) ) )] [ ]( ( )sx y z x y x y

n
s SE SE
mα + = +− ± − ± . Using the values provided, we get 

2 2( 1.964.9 63.1) (.6 (.09 1)) 1+− ± = 1.8 ± .28 = (1.52, 2.08). Therefore, we are 95% confident that the 
difference in the true mean heights for younger and older women (as defined in the exercise) is 
between 1.52 inches and 2.08 inches. 
 

b. The null hypothesis states that the true mean height for younger women is 1 inch higher than for older 
women, i.e. μ1 = μ2 + 1. The alternative hypothesis states that the true mean height for younger women 
is more than 1 inch higher than for older women. 
The test statistic, z, is given by 

0
2 2

( 1.8)
) (.09) (.

1
11)(

x y
x y

z
SE

−−

+
=

− ∆
−

= = 5.63 

The P-value is P(Z ≥ 5.63) = 1 – Φ(5.63) ≈ 1 – 1 = 0. Hence, we reject H0 and conclude that the true 
mean height for younger women is indeed more than 1 inch higher than for older women. 
 

c. From the calculation above, P-value = P(Z ≥ 5.63) = 1 – Φ(5.63) ≈ 1 – 1 = 0. Therefore, yes, we would 
reject H0 at any reasonable significance level (since the P-value is lower than any reasonable value for 
α). 
 

d. The actual hypotheses of (b) have not been changed, but the subscripts have been reversed. So, the 
relevant hypotheses are now H0: μ2 – μ1 = 1 versus Ha: μ2 – μ1 > 1. Or, equivalently, H0: μ1 – μ2 = –1 
versus Ha: μ1 – μ2 < –1. 
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3. Let µ1 = the population mean pain level under the control condition and µ2 = the population mean pain 

level under the treatment condition.  
a. The hypotheses of interest are H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 > 0. With the data provided, the test 

statistic value is 
2 2

(5.2 3.1) 0
2.3 2.3
43 43

z − −
=

+

= 4.23. The corresponding P-value is P(Z ≥ 4.23) = 1 – Φ(4.23) ≈ 0. 

Hence, we reject H0 at the α = .01 level (in fact, at any reasonable level) and conclude that the average 
pain experienced under treatment is less than the average pain experienced under control. 
 

b. Now the hypotheses are H0: μ1 – μ2 = 1 versus Ha: μ1 – μ2 > 1. The test statistic value is 

2 2

(5.2 3.1) 1
2.3 2.3
43 43

z − −
=

+

= 2.22, and the P-value is P(Z ≥ 2.22) = 1 – Φ(2.22) = .0132. Thus we would reject 

H0 at the α = .05 level and conclude that mean pain under control condition exceeds that of treatment 
condition by more than 1 point. However, we would not reach the same decision at the α = .01 level 
(because .0132 ≤ .05 but .0132 > .01).  

 
4.  

a. A 95% CI for the population mean PEF for children in biomass households is 1.201.963
5

.30
75

±  =    

(3.21, 3.39). Similarly, a 95% CI for the population mean PEF for children in LPG households is 
1.754.25 1.96
750

± = (4.12, 4.38). 

Assuming the two samples are independent, the simultaneous confidence level of the two 95% 
intervals is (.95)(.95) = 90.25%. 
 

b. Let µ1 and µ2 denote the two relevant population means (1 = biomass, 2 = LPG). The hypotheses of 

interest are H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 < 0. The test statistic value is 
2 2

(3.30 4.25) 0
1.20 1.75
755 750

z − −
=

+

= 

. 4
0.95

077
−  = –12.2. The P-value is P(Z ≤ –12.2) ≈ 0. Hence, we strongly reject H0 and conclude that the 

population mean PEF is definitely lower for children in biomass households than LPG households. 
 
c. No. The two CIs in a were from two independent random samples, and so the confidence levels could 

be multiplied: P(A ∩ B) = P(A)P(B).  However, two variables (PEF and FEV1) collected on the same 
group of 755 children do not constitute independent random samples. Hence, we cannot say that the 
two resulting CIs for that population have simultaneous confidence of 90.25%. (Using Bonferroni’s 
inequality, we can say the simultaneous confidence level is between 90% and 95%.)   

 
5.  

a. Ha says that the average calorie output for sufferers is more than 1 cal/cm2/min below that for non-

sufferers. ( ) ( )2 22 2
1 2 .2 .4

.1414
10 10m n

σ σ
+ = + = , so ( ) ( ).64 2.05 1

2.90
.1414

z
− − −

= = − .  The P-value for this 

one-sided test is P(Z ≤ –2.90) = .0019 < .01. So, at level .01, H0 is rejected. 
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b. zα = z.01 = 2.33, and so ( )1.2 1( 1.2) 1 2.33 1 .92 .8212.
.1414

β − + − = −Φ − − = −Φ − = 
 

 

 

c. ( )
( )

2

2

.2 2.33 1.28
65.15

.2
m n

+
= = =

−
, so use 66. 

 
6.  

a. Since 
( )18.12 16.87

3.53
2.56 1.96
40 32

z
−

= =
+

 and P-value = P(Z ≤ –3.53) ≈ .0001 < .01, H0 should be rejected at 

level .01. 
 

b. ( ) ( )1 01 2.33 .50 .3085.
.3539

β − = Φ − = Φ − = 
 

 

 

c. 
( )2

2.56 1.96 1 1.96.1169 .0529 37.06
40 1.645 1.28

n
n n

+ = = ⇒ = ⇒ =
+

, so use n = 38. 

 
d. Since n = 32 is not a large sample, it would no longer be appropriate to use the large sample z test of 

Section 9.1.  A small sample t procedure should be used (Section 9.2), and the appropriate conclusion 
would follow. Note, however, that the test statistic of 3.53 would not change, and thus it shouldn’t 
come as a surprise that we would still reject H0 at the .01 significance level. 

 
 
7. Let μ1 denote the true mean course GPA for all courses taught by full-time faculty, and let μ2 denote the 

true mean course GPA for all courses taught by part-time faculty. The hypotheses of interest are H0: μ1 = μ2 
versus Ha: μ1 ≠ μ2; or, equivalently, H0: μ1 – μ2 = 0 v. Ha: μ1 – μ2 ≠ 0.  
 

The large-sample test statistic is 0
2 2 2 2
1 2

( ) (2.7186 2.8
(.63342

639) 0
(.49241)

125 88
)

x y
s s
m n

z − − ∆
=

++

=
− − = –1.88. The corresponding 

two-tailed P-value is P(|Z| ≥ |–1.88|) = 2[1 – Φ(1.88)] = .0602. 
Since the P-value exceeds α = .01, we fail to reject H0. At the .01 significance level, there is insufficient 
evidence to conclude that the true mean course GPAs differ for these two populations of faculty. 

 
8.  

a. The parameter of interest is μ1 – μ2 = the true difference of mean tensile strength of the 1064-grade and 
the 1078-grade wire rod. The hypotheses are H0: μ1 – μ2 = –10 versus Ha: μ1 – μ2 < –10. The calculated 

test statistic and P-value are ( ) ( )
2 2

107.6 123.6 10 6 28.57
.2101.3 2.0

129 129

z
− − − −

= = = −

+

and P-value = Φ(–28.57) ≈ 0. 

This is less than any reasonable α, so reject H0.  There is very compelling evidence that the mean 
tensile strength of the 1078 grade exceeds that of the 1064 grade by more than 10. 

 
b. The requested information can be provided by a 95% confidence interval for μ1 – μ2:  

( ) ( ) ( ) ( )
2 2
1 21.96 16 1.96 .210 16.412, 15.588s sx y

m n
− ± + = − ± = − −  . 
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9.  
a. Point estimate 19.9 13.7 6.2x y− = − = .  It appears that there could be a difference. 

b. H0: μ1 – μ2 = 0, Ha: μ1 – μ2 ≠ 0, ( )
2 2

19.9 13.7 6.2 1.14
5.4439.1 15.8

60 60

z
−

= = =

+

, and the P-value = 2[P(Z > 1.14)] = 

2( .1271) = .2542.  The P-value is larger than any reasonable α, so we do not reject H0. There is no 
statistically significant difference. 
 

c. No. With a normal distribution, we would expect most of the data to be within 2 standard deviations of 
the mean, and the distribution should be symmetric.  Two sd’s above the mean is 98.1, but the 
distribution stops at zero on the left.  The distribution is positively skewed. 

 
d. We will calculate a 95% confidence interval for μ, the true average length of stays for patients given 

the treatment. ( )39.119.9 1.96 19.9 9.9 10.0,21.8 .
60

± = ± =  

 
 
10.  

a. The hypotheses are H0: μ1 – μ2 = 5 and Ha: μ1 – μ2 > 5.  Since ( )65.6 59.8 5
2.89

.2272
z

− −
= = , the P-value 

is P(Z ≥ 2.89) = 1 – Φ(.9981) = .0019. At the α = .001 level, H0 cannot be rejected in favor of Ha at this 
level, so the use of the high purity steel cannot be justified. 

 

b. z.001 = 3.08 and 1 2 0 1µ µ− − ∆ = , so ( )13.08 .53 .2891.
.2272

β  = Φ − = Φ − = 
 

 

 
 

11. ( )
2 2
1 2

/2
s

n
x zy s

mα± +−  = ( ) ( ) ( )2 2
/2 1 2x y z SE SEα− ± + .  Using α = .05 and zα/2 = 1.96 yields 

( ) ( ) ( ) ( )2 25.5 3.8 1.96 0.3 0.2 0.99,2.41− ± + = .  We are 95% confident that the true average blood lead 
level for male workers is between 0.99 and 2.41 higher than the corresponding average for female workers. 

 

12. The CI is  ( )
2 2 22

1 22.58 (5.10 5 1.07 1.102.58
8

.55)
8 93

s sx y
m n

− ± + = − ± + = –.45 ± .416 = (–.866, –.034).  

With 99% confidence, the mean total cholesterol level for vegans is between .034 and .866 mmol/l lower 
than for omnivores. 

 
13. 1 2 .05σ σ= = , d = .04, α = .01, β = .05, and the test is one-tailed ⇒ 

( )( )2.0025 .0025 2.33 1.645
49.38

.0016
n

+ +
= = , so use n = 50. 
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14. The appropriate hypotheses are H0: θ = 0 v. Ha: θ < 0, where 1 22θ µ µ= − . (θ < 0 is equivalent to 1 22µ µ< , 

so normal is more than twice schizophrenic)  The estimator of θ is ˆ 2X Yθ = − , with 
2 2
1 24ˆ( ) 4 ( ) ( )V V X V

m n
Y σ σθ = + = + , ˆ

ˆ( )V
θ

σ θ= , and ˆˆ
θ

σ is obtained by replacing each 2
iσ  with 2

is .  The 

test statistic is then 
ˆ

ˆ 0
ˆ
θ

θ
σ
−  (since θ0 = 0), and H0 is rejected if z ≤ –2.33.  With ( )ˆ 2 2.69 6.35 .97θ = − = −  

and ( ) ( )2 2

ˆ
4 2.3 4.03

ˆ .9236
43 45θ

σ = + = ,  .97 0 1.05
.9236

z − −
= = − ;  Because –1.05 > –2.33, H0 is not rejected. 

 
15.  

a. As either m or n increases, SD decreases, so 1 2 0

SD
µ µ− − ∆  increases (the numerator is positive), so 

1 2 0z
SDα

µ µ− − ∆ − 
 

decreases, so 1 2 0z
SDα

µ µβ − − ∆ = Φ − 
 

 decreases. 

 
b. As β decreases, zβ increases, and since zβ is the numerator of n, n increases also. 

 

16. 
2 2
1 2

.2
2

x yz
s s

nn n

−
= =

+

.  For n = 100, z = 1.41 and P-value = ( )2 1 1.41 .1586−Φ =   .   

For n = 400, z = 2.83 and P-value = .0046.  From a practical point of view, the closeness of x  and y  
suggests that there is essentially no difference between true average fracture toughness for type 1 and type 
2 steels.  The very small difference in sample averages has been magnified by the large sample sizes — 
statistical rather than practical significance.  The P-value by itself would not have conveyed this message. 

 
 
Section 9.2 
 
17.  

a. 
( )

( ) ( )

2

2 2

2 2

2 2

5 6 37.21 17.43 17.
.694 1.445 / 9 6 /

/10 /10

/10 /10 9
ν

+
= = = ≈

++
 

b. 
( )

( ) ( )

2

2 2

2 2

2 2

5 6 24.01 21.7 21.
.694 .4115 / 9 6 /

/10 /15

/10 /15 14
ν

+
= = = ≈

++
 

c. 
( )

( ) ( )

2

2 2

2 2

2 2

2 6 7.84 18.27 18.
.018 .4112 / 9 6 /

/10 /15

/10 /15 14
ν

+
= = = ≈

++
 

d. 
( )

( ) ( )

2

2 2

2 2

2 2

5 6 12.84 26.05 26.
.395 .0985 /11 6 /

/12 / 24

/12 / 24 23
ν

+
= = = ≈

++
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18.  

a. Let µ1 and µ2 denote true mean CO2 loss with a traditional pour and a slanted pour, respectively.   The 
hypotheses of interest are H0: μ1 – μ2 = 0 v. Ha: μ1 – μ2 ≠ 0. We’ll apply the two-sample t procedure, 

with 
2 2 2

2 2 2 2

(.5 / 4 .3 / 4)
(.5 / 4) / (4 1) ( / (4 1).3 / 4)

ν +
=

−− +
 = 4.91 → 4. The test statistic is 

2 2.5 .3
4 4

(4.0 3.7) 0t − −
=

+
= 1.03, 

with a two-sided P-value of roughly 2(.187) = .374 from Table A.8. [Software provides the more 
accurate P-value of .362.] Hence, we fail to reject H0 at any reasonable significance level; we conclude 
that there is no statistically significant difference in mean “bubble” loss between traditional and slanted 
champagne pouring, when the temperature is 18°C. 
 

b. Repeating the process of a at 12°C, we have ν ≈ 5, t = 7.21, P-value ≈ 2(0) = 0. [Software gives P = 
.001]. Hence, we reject H0 at any reasonable significance level; we conclude that there is a statistically 
significant difference in mean “bubble” loss between traditional and slanted champagne pouring, when 
the temperature is 12°C. 

 

19. For the given hypotheses, the test statistic is
2 25.03 5.38

6 6

115.7 129.3 10 3.6 1.20
3.007

t − + −
= = = −

+
, and the df is 

( )
( ) ( )

2

2 2

4.2168 4.8241
9.96

4.2168 4.8241
5 5

ν
+

= =

+

, so use df = 9. The P-value is P(T ≤ –1.20 when T ~ t9) ≈ .130.  

Since .130 > .01, we don’t reject H0. 
 
 
20. We want a 95% confidence interval for μ1 – μ2.  .025,9 2.262t = , so the interval is 

( ) ( )13.6 2.262 3.007 20.40, 6.80− ± = − − .  Because the interval is so wide, it does not appear that precise 
information is available. 

 
 
21. Let 1µ = the true average gap detection threshold for normal subjects, and 2µ = the corresponding value for 

CTS subjects.  The relevant hypotheses are H0: μ1 – μ2 = 0 v. Ha: μ1 – μ2 < 0, and the test statistic is 
1.71 2.53 .82 2.46

.3329.0351125 .07569
t − −
= = = −

+
.  Using df ( )

( ) ( )

2

2 2

.0351125 .07569
15.1

.0351125 .07569
7 9

ν
+

= =

+

, or 15, the P-value 

is P(T ≤ –2.46 when T ~ t15) ≈ .013. Since .013 > .01, we fail to reject H0 at the α = .01 level.  We have 
insufficient evidence to claim that the true average gap detection threshold for CTS subjects exceeds that 
for normal subjects. 
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22.  

a. According to the boxplots, HAZ depth measurements are generally somewhat larger when the current 
is set at the higher amperage than at the lower amperage. 
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b. Yes, it would be reasonable to apply the two-sample t procedure here. The accompanying normal 
probability plots do not exhibit a strong lack of linearity, meaning that the assumption of normally 
distributed depth populations is at least plausible. (Of course, with m = 18 and n = 9, it’s hard to detect 
such deviations.) 
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c. Let µ1 = the true average depth under the high current setting and let µ2 = the true average depth under 
the non-high current setting.  We test H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 > 0. [The order of the two 
groups is arbitrary; we just need the direction of the alternative to be consistent with our research 

question.] Using software, the test statistic is 
2 2

(2.378 1.926) 0
0 / 9. 0.5695 /1807

t
+

− −
= = 2.09, which we’ll compare 

to a t distribution with 17 df (again, using software). The corresponding one-tailed P-value is .025 
from Table A.8 (or .026 from software). Since .025 > .01, at the .01 significance level we fail to reject 
H0. At the 1% level, we do not have sufficient evidence to conclude that the true mean HAZ depth is 
larger when the current setting is higher. (Notice, though, that even with the small sample sizes we do 
have enough evidence to reject H0 at a .05 significance level.) 
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23.  

a. Using Minitab to generate normal probability plots, we see that both plots illustrate sufficient linearity.  
Therefore, it is plausible that both samples have been selected from normal population distributions. 

 

 
b. The comparative boxplot does not suggest a difference between average extensibility for the two types 

of fabrics. 

0.5 1.5 2.5

Comparative Box Plot for High Quality and Poor Quality Fabric

Quality
Poor

Quality
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extensibility (%)

 

c. We test 0: 210 =− µµH  v. a 1 2: 0H µ µ− ≠ . With degrees of freedom  ( ) 5.10
00017906.
0433265. 2

==ν  

(which we round down to 10) and test statistic is 
( )

38.
0433265.

08.
−=

−
=t  ≈ –0.4, the P-value is 

2(.349) = .698. Since the P-value is very large, we do not reject H0.  There is insufficient evidence to 
claim that the true average extensibility differs for the two types of fabrics. 
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24.  
a. 95% upper confidence bound: x + t.05,65-1SE = 13.4 + 1.671(2.05) = 16.83 seconds 
 
b. Let μ1 and μ2 represent the true average time spent by blackbirds at the experimental and natural 

locations, respectively. We wish to test H0: μ1 – μ2 = 0 v. Ha: μ1 – μ2 > 0. The relevant test statistic is 

22 76.105.2

7.94.13

+

−
=t = 1.37, with estimated df = 

49
76.1

64
05.2

)76.105.2(
44

222

+

+  ≈ 112.9. Rounding to t = 1.4 and   

df = 120, the tabulated P-value is very roughly .082. Hence, at the 5% significance level, we fail to 
reject the null hypothesis. The true average time spent by blackbirds at the experimental location is not 
statistically significantly higher than at the natural location. 

 
c. 95% CI for silvereyes’ average time – blackbirds’ average time at the natural location: (38.4 – 9.7) ± 

(2.00) 22 06.576.1 +  = (17.96 sec, 39.44 sec). The t-value 2.00 is based on estimated df = 55. 
 

25.  
a. Normal probability plots of both samples (not shown) exhibit substantial linear patterns, suggesting 

that the normality assumption is reasonable for both populations of prices. 
 

b. The comparative boxplots below suggest that the average price for a wine earning a ≥ 93 rating is 
much higher than the average price earning a ≤ 89 rating. 
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c. From the data provided, x = 110.8, y = 61.7, s1 = 48.7, s2 = 23.8, and ν ≈ 15. The resulting 95% CI for 

the difference of population means is 
2 2

.025,15
48.7 23.8(110.8 61.7)

12 14
t±− + = (16.1, 82.0). That is, we 

are 95% confident that wines rated ≥ 93 cost, on average, between $16.10 and $82.00 more than wines 
rated ≤ 89. Since the CI does not include 0, this certainly contradicts the claim that price and quality 
are unrelated. 

 
26. Let 1µ = the true average potential drop for alloy connections and let 2µ =  the true average potential drop 

for EC connections.  Since we are interested in whether the potential drop is higher for alloy connections, 
an upper tailed test is appropriate.  We test  H0: μ1 – μ2 = 0 v. Ha: μ1 – μ2 > 0.  Using the SAS output 
provided, the test statistic, when assuming unequal variances, is t = 3.6362, the corresponding df is 37.5, 
and the P-value for our upper tailed test would be ½(two-tailed P-value) = ½(.0008) = .0004.  Our P-value 
of .0004 is less than the significance level of .01, so we reject H0.  We have sufficient evidence to claim 
that the true average potential drop for alloy connections is higher than that for EC connections. 
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27.  
a.  Let’s construct a 99% CI for μAN, the true mean intermuscular adipose tissue (IAT) under the 

described AN protocol. Assuming the data comes from a normal population, the CI is given by 

/2, 1 .005,15
.26 .26.52 .52 2.947
16 16n

sx t t
nα −± = ± = ± = (.33, .71). We are 99% confident that the true mean 

IAT under the AN protocol is between .33 kg and .71 kg. 
 

b. Let’s construct a 99% CI for μAN – μC, the difference between true mean AN IAT and true mean 
control IAT. Assuming the data come from normal populations, the CI is given by 

2 2 2 2 2 2
1 2

/2, .005,21
(.26) (.1( ) (. 5) (.26) (.15)

16 8 16 8
52 .35) .17 2.831x y t ts s

m nα ν + + +− ± = − ± = ± = (–.07, .41). 

Since this CI includes zero, it’s plausible that the difference between the two true means is zero (i.e., 
μAN – μC = 0). [Note: the df calculation ν = 21 comes from applying the formula in the textbook.] 

 
 

28. We will test the hypotheses:  H0: μ1 – μ2 = 10 v. Ha: μ1 – μ2 > 10.  The test statistic is 

( )
( )2 22.75 4.44

10 5

10 4.5 2.08
2.17

x y
t

− −
= = =

+
 with df = 

( )
( ) ( )

2 2

2 2

2
2.75 4.44

10 5
2 2

2.75 4.44
10 5

22.08 5.59 5
3.95

9 4

ν
+

= = =

+

 , and the P-value from 

Table A.8 is ≈ .045, which is < .10 so we reject H0 and conclude that the true average lean angle for older 
females is more than 10 degrees smaller than that of younger females. 

 
 
29. Let μ1 = the true average compression strength for strawberry drink and let μ2 = the true average 

compression strength for cola.  A lower tailed test is appropriate.  We test H0: μ1 – μ2 = 0 v. Ha: μ1 – μ2 < 0. 

The test statistic is 14 2.10
29.4 15

t −
= = −

+
; ( )

( ) ( )

2

2 2

44.4 1971.36 25.3
77.811429.4 15

14 14

ν = = =

+

, so use df=25.            

The P-value ≈ P(t < –2.10) = .023.  This P-value indicates strong support for the alternative hypothesis.  
The data does suggest that the extra carbonation of cola results in a higher average compression strength. 

 
30.  

a. We desire a 99% confidence interval.  First we calculate the degrees of freedom: 

( )
( ) ( )

2 2

2 2

2
2.2 4.3
26 26

2 2
2.2 4.3
26 26

37.24 37

26 26

ν
+

= =

+

 , but there is no df = 37 row in Table A.5.  Using 36 degrees of 

freedom (a more conservative choice), .005,36 2.719t = , and the 99% CI is 

( ) ( )2 22.2 4.3
26 2633.4 42.8 2.719 9.4 2.576 11.98, 6.83− ± + = − ± = − − .  We are 99% confident that the true 

average load for carbon beams exceeds that for fiberglass beams by between 6.83 and 11.98 kN. 
 
b. The upper limit of the interval in part a does not give a 99% upper confidence bound.  The 99% upper 

bound would be ( )9.4 2.434 .9473 7.09− + = − , meaning that the true average load for carbon beams 
exceeds that for fiberglass beams by at least 7.09 kN. 
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31.  

a. The most notable feature of these boxplots is the larger amount of variation present in the mid-range 
data compared to the high-range data.  Otherwise, both look reasonably symmetric with no outliers 
present. 

 
b. Using df = 23, a 95% confidence interval for mid-range high-rangeµ µ−  is 

( ) ( )2 215.1 6.83
17 11438.3 437.45 2.069 .85 8.69 7.84,9.54− ± + = ± = − .  Since plausible values for 

mid-range high-rangeµ µ−  are both positive and negative (i.e., the interval spans zero) we would conclude that 
there is not sufficient evidence to suggest that the average value for mid-range and the average value 
for high-range differ. 

 
 

32.  
a. Let μ1 denote the true average stance duration among elderly individuals. Using the summary 

information provided, a 99% CI for μ1 is given by 

/2, 1 .005,27
117 117

28
801 801 2.771

28n
sx t t
nα −± = ± = ± = (739.7, 862.3). We’re 99% confident that the true 

average stance duration among elderly individuals is between 739.7 ms and 862.3 ms. 
b. Let μ2 denote the true average stance duration among younger individuals. We want to test the 

hypotheses H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 > 0. Assuming that both stance duration distributions are 
normal, we’ll use a two-sample t test; the test statistic is  

0
2 2 2 2
1 2

( ) (801 780) 0
(117 (72)

1
)

28 6

x y
s s
m

t

n

− − ∆ − −
=

++

= = 0.74. Degrees of freedom are ν = 41 using the book’s formula. 

From Table A.8 (ν = 40 column, t = 0.7), the P-value is roughly .244. [Software gives .233.] Since 
.233 > .05, we fail to reject H0 at the α = .05 level. (In fact, with such a small test statistic value, we 
would fail to reject H0 at any reasonable significance level.) At the .05 level, there is not sufficient 
evidence to conclude that the true average stance duration is larger among elderly individuals than it is 
among younger individuals.  

high rangemid range

470

460

450

440

430

420

m
id

 ra
ng

e

Comparative Box Plot for High Range and Mid Range



Chapter 9:  Inferences Based on Two Samples 

 266 

 
33. Let μ1 and μ2 represent the true mean body mass decrease for the vegan diet and the control diet, 

respectively. We wish to test the hypotheses H0: μ1 – μ2 ≤ 1 v. Ha: μ1 – μ2 > 1. The relevant test statistic is 

32
8.2

32
2.3

1)8.38.5(
22

+

−−
=t = 1.33, with estimated df = 60 using the formula. Rounding to t = 1.3, Table A.8 gives a 

one-sided P-value of .098 (a computer will give the more accurate P-value of .094).  
Since our P-value > α = .05, we fail to reject H0 at the 5% level. We do not have statistically significant 
evidence that the true average weight loss for the vegan diet exceeds the true average weight loss for the 
control diet by more than 1 kg. 

 
34.  

a. Following the usual format for most confidence intervals: statistic ± (critical value)(standard error), a 
pooled variance confidence interval for the difference between two means is 
( ) 1 1

/2, 2m n p m nx y t sα + −− ± ⋅ + . 
 
b. The sample means and standard deviations of the two samples are 13.90x = , 1 1.225s = , 12.20y = , 

2 1.010s = .  The pooled variance estimate is 2
ps =  

( ) ( )2 22 2
1 2

1 1 4 1 4 11.225 1.010
2 2 4 4 2 4 4 2

m ns s
m n m n

− − − −       + = +       + − + − + − + −       
 = 1.260, so sp = 1.1227.  

With df = m + n – 1 = 6 for this interval, .025,6 2.447t =  and the desired interval is 

( ) ( )( ) 1 1
4 413.90 12.20 2.447 1.1227− ± +  = 1.7 ± 1.945 = (–.24, 3.64).  This interval contains 0, so it 

does not support the conclusion that the two population means are different. 
 
c. Using the two-sample t interval discussed earlier, we use the CI as follows: First, we need to calculate 

the degrees of freedom. 
( )

( ) ( )

2 2

2 2

2
1.225 1.01

4 4
2 2

1.225 1.01
4 4

.3971 5.78 5

.0686

3 3

ν
+

= = =

+

 and .025,5 2.571t =  . Then the interval 

is ( ) ( ) ( )2 21.225 1.01
4 413.9 12.2 2.571 1.70 2.571 .7938 .34,3.74− ± + = ± = − .  This interval is slightly wider, 

but it still supports the same conclusion. 
 
35. There are two changes that must be made to the procedure we currently use.  First, the equation used to 

compute the value of the t test statistic is: 
( )

1 1
p

x y
t

s
m n

− − ∆
=

+
 where sp is defined as in Exercise 34.  Second, 

the degrees of freedom = m + n – 2.  Assuming equal variances in the situation from Exercise 33, we 

calculate sp as follows: ( ) ( )2 27 92.6 2.5 2.544
16 16ps    = + =   
   

.    The value of the test statistic is, 

then,
( ) ( )32.8 40.5 5

2.24 2.2
1 12.544
8 10

t
− − −

= = − ≈ −
+

 with df = 16, and the P-value is P(T < –2.2) = .021.  Since 

.021 > .01, we fail to reject H0. 
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Section 9.3 
 
36. From the data provided, 7.25d = and sD = 11.8628. The parameter of interest: μD = true average difference 

of breaking load for fabric in unabraded or abraded condition. The hypotheses are H0: μD = 0 versus          

Ha: μD > 0. The calculated test statistic is 7.25 0 1.73
11.8628 / 8

t −
= = ; at 7 df, the P-value is roughly .065. 

Since .065 > .01, we fail to reject H0 at the α = .01 level.  The data do not indicate a significant mean 
difference in breaking load for the two fabric load conditions. 
 

37.  
a. This exercise calls for paired analysis.  First, compute the difference between indoor and outdoor 

concentrations of hexavalent chromium for each of the 33 houses.  These 33 differences are 
summarized as follows:  n = 33, .4239d = − , .3868Ds = , where d = (indoor value – outdoor value).  
Then .025,32 2.037t = , and a 95% confidence interval for the population mean difference between indoor 

and outdoor concentration is ( ) ( ).3868.4239 2.037 .4239 .13715 .5611, .2868
33

 − ± = − ± = − − 
 

.  We can 

be highly confident, at the 95% confidence level, that the true average concentration of hexavalent 
chromium outdoors exceeds the true average concentration indoors by between .2868 and .5611 
nanograms/m3. 

 
b. A 95% prediction interval for the difference in concentration for the 34th house is 

( ) ( )( ) ( )1 1
.025,32 331 .4239 2.037 .3868 1 1.224,.3758D nd t s± + = − ± + = − .  This prediction interval 

means that the indoor concentration may exceed the outdoor concentration by as much as .3758 
nanograms/m3 and that the outdoor concentration may exceed the indoor concentration by a much as 
1.224 nanograms/m3, for the 34th house.  Clearly, this is a wide prediction interval, largely because of 
the amount of variation in the differences. 

 
38.  

a. The boxplots indicate that retrieval time is much longer when the professional is accessing a library of 
slides than the digital resource. 
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b. For the differences provided, d = 20.5 and sD = 11.96. A normal probability plot of the differences is 

reasonably straight, so it’s plausible that time differences follow a normal distribution and the paired t 
interval is valid.  

With n = 13, the t critical value for the CI is t.025,12 = 2.179. The resulting interval is 11.962.1792
3

0.5
1

±  

= (13.3, 27.7). We are 95% confident that using the slide library takes, on average, between 13.3 and 
27.7 seconds longer to retrieve a medical image. In particular, it is definitely not plausible that the true 
mean difference is zero.  

 
39.  

a. The accompanying normal probability plot shows that the differences are consistent with a normal 
population distribution. 
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b. We want to test H0: μD = 0 versus Ha: μD ≠ 0. The test statistic is 0 167.2 0 2.74
/ 228 / 14D

dt
s n

− −
= = = , and 

the two-tailed P-value is given by 2[P(T > 2.74)] ≈ 2[P(T > 2.7)] = 2[.009] = .018.  Since .018 < .05, 
we reject H0.  There is evidence to support the claim that the true average difference between intake 
values measured by the two methods is not 0.  

 
40. From the data, n = 10, d = 105.7, sD = 103.845. 

a. Let μD = true mean difference in TBBMC, postweaning minus lactation. We wish to test the 

hypotheses H0: μD ≤ 25 v. Ha: μD > 25. The test statistic is 
10/845.103

257.105 −
=t  = 2.46; at 9 df, the 

corresponding P-value is around .018. Hence, at the 5% significance level, we reject H0 and conclude 
that true average TBBMC during postweaning does exceed the average during lactation by more than 
25 grams. 

 
b. A 95% upper confidence bound for μD = d + t.05,9sD/ n  = 105.7 + 1.833(103.845)/ 10 = 165.89 g. 

 
c. No. If we pretend the two samples are independent, the new standard error is is roughly 235, far 

greater than 103.845/ 10 .  In turn, the resulting t statistic is just t = 0.45, with estimated df = 17 and 
P-value = .329 (all using a computer).  
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41.  
a. Let μD denote the true mean change in total cholesterol under the aripiprazole regimen. A 95% CI for 

μD, using the “large-sample” method, is /2 3.75 1.9 (3.878)6Dsd z
nα± = ± = (–3.85, 11.35). 

 
b. Now let μD denote the true mean change in total cholesterol under the quetiapine regimen. The 

hypotheses are H0: μD = 0 versus Ha: μD > 0. Assuming the distribution of cholesterol changes under 
this regimen is normal, we may apply a paired t test: 

0 9.05 0 2.126
4.256/D

d
s n

t −
= = =

− ∆ ⇒ P-value = P(T35 ≥ 2.126) ≈ P(T35 ≥ 2.1) = .02. 

Our conclusion depends on our significance level. At the α = .05 level, there is evidence that the true 
mean change in total cholesterol under the quetiapine regimen is positive (i.e., there’s been an 
increase); however, we do not have sufficient evidence to draw that conclusion at the α = .01 level. 

 

c. Using the “large-sample” procedure again, the 95% CI is 1.96 Dsd
n

±  = 1.96 ( )d SE d± . If this equals 

(7.38, 9.69), then midpoint = d = 8.535 and width = 2(1.96 SE( d )) = 9.69 – 7.38 = 2.31 ⇒ 
2.31)

2(1 96)
(

.
SE d = = .59. Now, use these values to construct a 99% CI (again, using a “large-sample” z 

method): 2.576 ( )d SE d± = 8.535 ± 2.576(.59) =    8.535 ± 1.52 = (7.02, 10.06). 
 
42. The n = 6 differences (Before – After) are –1, 2, 24, 35, –16, 1. A normal probability plot of these 6 

differences does not suggest a significant violation of the normality assumption (although, with n = 6, we 
have essentially no power to detect such a difference). From the differences, d = 7.50 and sD = 18.58. 

a. We wish to test H0: μD = 0 versus Ha: μD ≠ 0. The test statistic is 7.50 0
18. 8 / 65

t −
=  = 0.99; at 5 df, the 

two-tailed P-value is roughly .368. Since .368 is larger than any reasonable α level, we fail to reject H0. 
The data do not provide statistically significant evidence of a change in the average number of 
accidents after information was added to road signs. 

b. A 95% prediction interval for a new difference value is .025,5 1 1
6Dt sd +±  = 

(1 17. 8.550 2.571 8) 1
6

± +  = 7.50 ± 51.60 = (–44.1, 59.1).  That is, we’re 95% confident that the 

number of accidents at a 7th randomly-selected site after the signage changes will be anywhere from 44 
fewer accidents to 59 more accidents than occurred before the information was added.  (That’s a pretty 
useless interval!)  

 
43.  

a. Although there is a “jump” in the middle of the Normal Probability plot, the data follow a reasonably 
straight path, so there is no strong reason for doubting the normality of the population of differences. 

 
b. A 95% lower confidence bound for the population mean difference is: 

( ).05,14
23.1838.60 1.761 38.60 10.54 49.14

15
dsd t
n

   − = − − = − − = −   
   

.  We are 95% confident that the 

true mean difference between age at onset of Cushing’s disease symptoms and age at diagnosis is 
greater than -49.14. 

 
c. A 95% upper confidence bound for the population mean difference is 38.60 + 10.54 = 49.14. 
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44.  
a. No. The statement μD = 0 implies that, on the average, the time difference between onset of symptoms 

and diagnosis of Cushing’s disease is 0 months! That’s impossible, since doctors wouldn’t run the tests 
to detect Cushing’s disease until after a child has shown symptoms of the disease (Cushing screening is 
not a standard preventive procedure). For each child, the difference d = (age at onset) – (age at 
diagnosis) must be negative. 

 
b. Using the subtraction order in (a), which matches the data in Exercise 43, we wish to test the 

hypotheses H0: μD = –25 versus Ha: μD < –25 (this corresponds to age at diagnosis exceeding age at 

onset by more than 25 months, on average). The paired t statistic is 0 38.60 ( 25)
23.18 // 15D

t
s
d

n
− − −∆

=
−

= = –

2.27, and the one-tailed P-value is P(T14 ≤ –2.27) = P(T14 ≥ 2.27) ≈ P(T14 ≥ 2.3) = .019. This is a low 
P-value, so we have reasonably compelling evidence that, on the average, the first diagnosis of 
Cushing’s disease happens more than 25 months after the first onset of symptoms. 

 
45.  

a. Yes, it’s quite plausible that the population distribution of differences is normal, since the 
accompanying normal probability plot of the differences is quite linear. 
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b. No. Since the data is paired, the sample means and standard deviations are not useful summaries for 
inference. Those statistics would only be useful if we were analyzing two independent samples of data.  
(We could deduce d by subtracting the sample means, but there’s no way we could deduce sD from the 
separate sample standard deviations.) 
 

c. The hypotheses corresponding to an upper-tailed test are H0: μD = 0 versus Ha: μD > 0. From the data 

provided, the paired t test statistic is 0 82.5
/ 15

0
87.4 /D

t d
s n
− ∆ −

= = = 3.66. The corresponding P-value is 

P(T14 ≥ 3.66) ≈ P(T14 ≥ 3.7) = .001. While the P-value stated in the article is inaccurate, the conclusion 
remains the same: we have strong evidence to suggest that the mean difference in ER velocity and IR 
velocity is positive. Since the measurements were negative (e.g. –130.6 deg/sec and –98.9 deg/sec), 
this actually means that the magnitude of IR velocity is significantly higher, on average, than the 
magnitude of ER velocity, as the authors of the article concluded. 
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46. We need to check the differences to see if the assumption of normality is plausible.  A normal probability 

plot validates our use of the t distribution.  A 95% upper confidence bound for μD is 

( ).05,15
508.6452635.63 1.753 2635.63 222.91

16
dsd t
n

   + = + = +   
   

 = 2858.54. We are 95% confident that 

the true mean difference between modulus of elasticity after 1 minute and after 4 weeks is at most 2858.54. 
 
47. From the data, n = 12, d = –0.73, sD = 2.81.  

a. Let μD = the true mean difference in strength between curing under moist conditions and laboratory 
drying conditions. A 95% CI for μD is d ± t.025,11sD/ n  = –0.73 ± 2.201(2.81)/ 10 =  
(–2.52 MPa, 1.05 MPa). In particular, this interval estimate includes the value zero, suggesting that 
true mean strength is not significantly different under these two conditions. 

 
b. Since n = 12, we must check that the differences are plausibly from a normal population. The normal 

probability plot below strongly substantiates that condition. 
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48. With ( ) ( )1 1, 6,5x y = , ( ) ( )2 2, 15,14x y = , ( ) ( )3 3, 1,0x y = , and ( ) ( )4 4, 21,20x y = , 1d =  and sD = 0 (the di’s 

are 1, 1, 1, and 1), while s1 = s2 = 8.96, so sp = 8.96 and t = .16. 
 

 
Section 9.4 
 
49. Let p1 denote the true proportion of correct responses to the first question; define p2 similarly. The 

hypotheses of interest are H0: p1 – p2 = 0 versus Ha: p1 – p2 > 0. Summary statistics are n1 = n2 = 200, 

1
164ˆ
200

p =  = .82, 2
140ˆ
200

p = = .70, and the pooled proportion is p̂  = .76. Since the sample sizes are large, we 

may apply the two-proportion z test procedure.  

The calculated test statistic is z =
[ ]1 1

200 200

(.82 .70) 0
(.76)(.24) +

− −  = 2.81, and the P-value is P(Z ≥ 2.81) = .0025. 

Since .0025 ≤ .05, we reject H0 at the α = .05 level and conclude that, indeed, the true proportion of correct 
answers to the context-free question is higher than the proportion of right answers to the contextual one. 
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50.  

a. With 1
63ˆ .2100

300
p = = , 2

75ˆ .4167
180

p = = , and 63 75ˆ .2875
300 180

p +
= =

+
, 

( )( )( )1 1
300 180

.2100 .4167 .2067 4.84
.0427.2875 .7125

z − −
= = = −

+
. The P-value is 2P(Z ≤ –4.84) ≈ 2(0) = 0. Thus, at 

the α = .01 level (or any reasonable significance level) H0 is rejected. The proportion of non-
contaminated chickens differs for the two companies (Perdue and Tyson). 

 

b. .275p =  and σ = .0432, so power = 
( )( ) ( )( )1.96 .0421 .2 1.96 .0421 .2

1
.0432 .0432

    + − +      − Φ −Φ =            
 

( ) ( )1 6.54 2.72 .9967− Φ −Φ =   . 
 
 

51. Let p1 = the true proportion of patients that will experience erectile dysfunction when given no counseling, 
and define p2 similarly for patients receiving counseling about this possible side effect. The hypotheses of 
interest are H0: p1 – p2 = 0 versus Ha: p1 – p2 < 0.  
The actual data are 8 out of 52 for the first group and 24 out of 55 for the second group, for a pooled 

proportion of 8 24ˆ
52 55

p +
=

+
 = .299. The two-proportion z test statistic is 

[ ]1 1
5552

(.153 .436) 0
(.299)(.701) +

− − = –3.20, and 

the P-value is P(Z ≤ –3.20) = .0007. Since .0007 < .05, we reject H0 and conclude that a higher proportion 
of men will experience erectile dysfunction if told that it’s a possible side effect of the BPH treatment, than 
if they weren’t told of this potential side effect. 
 
 

52. Let α = .05. A 95% confidence interval is ( ) ( )1 1 2 2ˆ ˆ ˆ ˆ
1 2 /2ˆ ˆ p q p q

m np p zα− ± +  

( ) ( )( ) ( )( ) ( )
171 126 140224

395 395 266 266126224
395 266 1.96 .0934 .0774 .0160,.1708

395 266
 

= − ± + = ± = 
 

. 

 
 
53.  

a. Let p1 and p2 denote the true incidence rates of GI problems for the olestra and control groups, 
respectively. We wish to test H0: p1 – μ2 = 0 v. Ha: p1 – p2 ≠ 0. The pooled proportion is 

563529
)158(.563)176(.529ˆ

+
+

=p  = .1667, from which the relevant test statistic is z = 

]563529)[8333)(.1667(.

158.176.
11 −− +

−  = 0.78. The two-sided P-value is 2P(Z ≥ 0.78) = .433 > α = .05, 

hence we fail to reject the null hypothesis. The data do not suggest a statistically significant difference 
between the incidence rates of GI problems between the two groups. 

 

b. 
( )

39.1210
)05(.

)8)(.2(.)85)(.15(.28.12/)65.1)(35(.96.1
2

2

=
++

=n , so a common sample size of m = n = 

1211 would be required. 
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54. Let p1 = true proportion of irradiated bulbs that are marketable; p2 = true proportion of untreated bulbs that 

are marketable. The hypotheses are 0 1 2: 0H p p− =  v. a 1 2: 0H p p− > .  The test statistic is 

( )
1 2

1 1

ˆ ˆ
ˆ ˆ m n

p pz
pq

−
=

+
. With 1

153ˆ .850
180

p = = , and 2
119ˆ .661
180

p = = , 272ˆ .756
360

p = = , 

( )( )( )1 1
180 180

.850 .661 .189 4.2
.045.756 .244

z −
= = =

+
.  The P-value is 1 – Φ(4.2) ≈ 0, so reject H0 at any reasonable 

level.  Radiation appears to be beneficial. 
 
 
55.  

a. A 95% large sample confidence interval formula for ln(θ) is ( ) /2
ˆln m x n yz

mx nyαθ − −
± + .  Taking the 

antilogs of the upper and lower bounds gives the confidence interval for θ itself. 
 

b. 
189

11,034
104

11,037

ˆ 1.818θ = = , ( )ˆln .598θ = , and the standard deviation is 

( )( ) ( )( )
10,845 10,933 .1213

11,034 189 11,037 104
+ = , so the CI for ln(θ) is ( ) ( ).598 1.96 .1213 .360,.836± = .  

Then taking the antilogs of the two bounds gives the CI for θ to be (1.43, 2.31). We are 95% confident 
that people who do not take the aspirin treatment are between 1.43 and 2.31 times more likely to suffer 
a heart attack than those who do. This suggests aspirin therapy may be effective in reducing the risk of 
a heart attack. 
 

56.  
a. The “after” success probability is p1 + p3 while the “before” probability is p1 + p2, so p1 + p3 > p1 + p2 

becomes p3 > p2; thus, we wish to test 0 3 2:H p p=  versus a 3 2:H p p> . 
 

b. The estimator of (p1 + p3) – (p1 + p2) is ( ) ( )1 3 1 2 3 2X X X X X X
n n

+ − + −
= . 

 

c. When H0 is true, p2 = p3, so 3 2 2 3X X p pV
n n
− +  = 

 
, which is estimated by 2 3ˆ ˆp p

n
+ .  The z statistic is 

then 
3 2

3 2

2 3 2 3ˆ ˆ

X X
X Xn

p p X X
n

−
−

=
+ +

. 

 

d. The computed value of z is 200 150 2.68
200 150

−
=

+
, so P-value = 1 – Φ(2.68) = .0037.  At level .01, H0 can 

be rejected, but at level .001, H0 would not be rejected. 
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57. 1
15 7ˆ .550

40
p +
= = , 2

29ˆ .690
42

p = = , and the 95% CI is ( ) ( ) ( ).550 .690 1.96 .106 .14 .21 .35,.07− ± = − ± = − . 

 

58. Using p1 = q1 = p2 = q2 = .5, ( )
nnn

L 7719.225.25.96.12 =





 += , so L = .1 requires n = 769. 

 
Section 9.5 
 
59.  

a. From Table A.9, column 5, row 8, .01,5,8 3.69F = . 
 
b. From column 8, row 5, .01,8,5 4.82F = . 

c. 207.1

5,8,05.
8,5,95. ==

F
F . 

d. 271.1

8,5,05.
5,8,95. ==

F
F  

e. 30.412,10,01. =F  

f. 212.
71.4
11

10,12,01.
12,10,99. ===

F
F . 

g. 16.64,6,05. =F , so ( ) 95.16.6 =≤FP . 

h. Since 177.
64.5
1

5,10,99. ==F , ( ) ( ) ( )177.74.474.4177. ≤−≤=≤≤ FPFPFP  94.01.95. =−= . 

 
 
60.  

a. Since the given f value of 4.75 falls between 33.310,5,05. =F  and 64.510,5,01. =F , we can say that the 
upper-tailed P-value is between .01 and .05. 

 
b. Since the given f of 2.00 is less than 52.210,5,10. =F , the P-value > .10. 
 
c. The two tailed P-value = ( ) 02.)01(.264.52 ==≥FP . 
 
d. For a lower tailed test, we must first use formula 9.9 to find the critical values: 

3030.1

5,10,10.
10,5,90. ==

F
F , 2110.1

5,10,05.
10,5,95. ==

F
F , 0995.1

5,10,01.
10,5,99. ==

F
F .   

Since .0995 < f = .200 < .2110,   .01 < P-value < .05 (but  obviously closer to .05). 
 
e. There is no column for numerator df of 35 in Table A.9, however looking at both df = 30 and df = 40 

columns, we see that for denominator df = 20, our f value is between F.01  and F.001.  So we can say  
.001< P-value < .01. 
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61. We test 
1 2

2 2
0 :H σ σ=  v. 

1 2

2 2
a :H σ σ≠ .  The calculated test statistic is ( )

( )

2

2

2.75
.384

4.44
f = = . To use Table 

A.9, take the reciprocal: 1/f = 2.61. With numerator df = m – 1 = 5 – 1 = 4 and denominator df = n – 1 =   
10 – 1 = 9 after taking the reciprocal, Table A.9 indicates the one-tailed probability is slightly more than 
.10, and so the two-sided P-value is slightly more than 2(.10) = .20. 
Since .20 > .10, we do not reject H0 at the α = .1 level and conclude that there is no significant difference 
between the two standard deviations. 

 
 
62. With 1σ =  true standard deviation for not-fused specimens and 2σ =  true standard deviation for fused 

specimens, we test 0 1 2:H σ σ=  v. a 1 2:H σ σ> .  The calculated test statistic is ( )
( )

2

2

277.3
1.814

205.9
f = = . With 

numerator df = m – 1 = 10 – 1 = 9, and denominator df = n – 1 = 8 – 1 = 7, 7,9,10.72.2814.1 Ff =<= .  We 
can say that the P-value > .10, which is obviously > .01, so we cannot reject H0.  There is not sufficient 
evidence that the standard deviation of the strength distribution for fused specimens is smaller than that of 
not-fused specimens. 

 
 
63. Let 2

1σ =  variance in weight gain for low-dose treatment, and 2
2σ =  variance in weight gain for control 

condition.  We wish to test 2 2
0 1 2:H σ σ=  v. 2 2

a 1 2:H σ σ> . The test statistic is
2
1
2
2

2

2

54
32

sf
s

= = = 2.85. From 

Table A.9 with df = (19, 22) ≈ (20, 22), the P-value is approximately .01, and we reject H0 at level .05. The 
data do suggest that there is more variability in the low-dose weight gains. 

 
 
64. The sample standard deviations are s1 = 0.127 and s2 = 0.060. For the hypotheses 

0 1 2:H σ σ= versus a 1 2:H σ σ≠ , we find a test statistic of f = 0.1272/0.0602 = 4.548. At df = (8, 8), Table 
A.9 indicates the one-tailed P-value is between .05 and .01 (since 3.44 < 4.548 < 6.03). This is a two-sided 
test, so the P-value is between 2(.05) and 2(.01), i.e., between .02 and .10. Hence, we reject H0 at the α = 
.10 level.  The data suggest a significant difference in the two population standard deviations. 

 
 

65. 
2 2

1 1
1 /2, 1, 1 /2, 1, 12 2

2 2

/ 1
/m n m n

SP F F
Sα α

σ α
σ− − − − −

 
≤ ≤ = − 

 
.  The set of inequalities inside the parentheses is clearly 

equivalent to 
2 22
2 1 /2, 1, 1 2 /2, 1, 12

2 2 2
1 1 1

m n m nS F S F
S S
α ασ

σ
− − − − −≤ ≤ .  Substituting the sample values 2

1s  and 2
2s  yields the 

confidence interval for 
2
2
2
1

σ
σ

, and taking the square root of each endpoint yields the confidence interval for  

2

1

σ
σ

. With m = n = 4,  we need .05,3,3 9.28F =  and .95,3,3
1 .108

9.28
F = = .  Then with s1 = .160 and s2 = .074, 

the CI for 
2
2
2
1

σ
σ

 is (.023, 1.99), and for 2

1

σ
σ

 is (.15, 1.41). 

 
 



Chapter 9:  Inferences Based on Two Samples 

 276 

66. A 95% upper bound for 2

1

σ
σ

 is ( ) ( )
( )

22
2 .05,9,9

22
1

3.59 3.18
8.10

.79
s F

s
= = .  We are confident that the ratio of the 

standard deviation of triacetate porosity distribution to that of the cotton porosity distribution is at most 
8.10. 

 
 
Supplementary Exercises 
 
67. We test 0: 210 =− µµH   v. 0: 21 ≠− µµaH .  The test statistic is 

( )
2 2 2 2
1 2

807 757 50 50 3.22
15.52424127 41

10 10

x y
t

s s
m n

− − ∆ −
= = = = =

++

.  The approximate df is 

( )
( ) ( )

6.15

9
1.168

9
9.72

241
22

2
=

+

=ν , which we round down to 15. The P-value for a two-tailed test is 

approximately 2P(T > 3.22) = 2( .003) = .006.  This small of a P-value gives strong support for the 
alternative hypothesis.  The data indicates a significant difference. Due to the small sample sizes (10 each), 
we are assuming here that compression strengths for both fixed and floating test platens are normally 
distributed. And, as always, we are assuming the data were randomly sampled from their respective 
populations. 

 
68.  

a. From the first sample, a 99% lower prediction bound is 1 1
.01, 716 11 6.2 2.583(4.5) 1nx t s− + = − +  =   

6.2 – 11.96 = –5.76. We can be 99% confident that the weight loss for a single individual under the 
supervised program will be more than –5.76 — that is, no worse than a gain of 5.76 kg.  With the large 
standard deviation and small sample size, we cannot say with confidence that an individual will lose 
weight with this program. 

 
b. The hypotheses of interest are 0 1 2: 2H µ µ− =  versus a 1 2: 2H µ µ− > . From the Minitab output, the 

test statistic and P-value are t = 1.89 and .035 at 28 df.  Since .035 > .01, we cannot reject H0 at the .01 
significance level. (Notice, however, that we can conclude average weight loss is more than 2 kg better 
with the supervised program at the .05 level.) 

 
69. Let p1 = true proportion of returned questionnaires that included no incentive; p2 = true proportion of 

returned questionnaires that included an incentive. The hypotheses are 0 1 2: 0H p p− =  v. a 1 2: 0H p p− < .  

The test statistic is 
( )

1 2

1 1

ˆ ˆ
ˆ ˆ m n

p pz
pq

−
=

+
.  

1
75ˆ .682

110
p = = and 2

66ˆ .673
98

p = = ; at this point, you might notice that since 1 2ˆ ˆp p> , the numerator of the 

z statistic will be > 0, and since we have a lower tailed test, the P-value will be > .5.  We fail to reject H0.  
This data does not suggest that including an incentive increases the likelihood of a response. 
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70. Notice this study used a paired design, so we must apply the paired t test. To make the calculations easier, 

we have temporarily multiplied all values by 10,000. The 13 differences have a sample mean and sd of    
d  = 2.462 and sD = 3.307. 
a. A 95% CI for µD is .025,122.462 (3.307 13) /t±  = (0.463, 4.460). Restoring the original units, we are 

95% confident that the true mean difference is between .0000463 and .0004460 kcal/kg/lb. In 
particular, since this interval does not include 0, there is evidence of a difference in average energy 
expenditure with the two different types of shovel. 
 

b. Now test H0: µD = 0 versus Ha: µD > 0. The test statistic is t = 2.462 0
3 3.307 / 1

− = 2.68, for a one-tailed P-

value of roughly P(T ≥ 2.7 when T ~ t12) = .010. Since .010 ≤ .05, we reject H0 at the .05 level and 
conclude that average energy expenditure is greater with the conventional shovel than with the 
perforated shovel. 

 

71. The center of any confidence interval for 1 2µ µ− is always 1 2x x− , so 1 2
473.3 1691.9 609.3

2
x x − +
− = = .  

Furthermore, half of the width of this interval is ( )1691.9 473.3
1082.6

2
− −

= .  Equating this value to the 

expression on the right of the 95% confidence interval formula, we find 
2 2
1 2

1 2

1082.6 552.35
1.96

s s
n n
+ = = .     

For a 90% interval, the associated z value is 1.645, so the 90% confidence interval is then 
( )( )609.3 1.645 552.35 609.3 908.6± = ±  ( )299.3,1517.9= − . 

 
 
72.  

a. A 95% lower confidence bound for the true average strength of joints with a side coating is 

( ).025,9
5.9663.23 1.833 63.23 3.45 59.78

10
sx t
n

   − = − = − =   
   

.  That is, with a confidence level of 

95%, the average strength of joints with a side coating is at least 59.78 (Note:  this bound is valid only 
if the distribution of joint strength is normal.)  

 
b. A 95% lower prediction bound for the strength of a single joint with a side coating is 

( ) ( )( )1 1
.025,9 101 63.23 1.833 5.96 1nx t s− + = − +   63.23 11.46 51.77= − = . That is, with a confidence 

level of 95%, the strength of a single joint with a side coating would be at least 51.77. 
 
c. For a confidence level of 95%, a two-sided tolerance interval for capturing at least 95% of the strength 

values of joints with side coating is x ± (tolerance critical value) s.  The tolerance critical value is 
obtained from Table A.6 with 95% confidence, k = 95%, and n = 10.  Thus, the interval is 

( )( ) ( )63.23 3.379 5.96 63.23 20.14 43.09,83.37± = ± = .  That is, we can be highly confident that at 
least 95% of all joints with side coatings have strength values between 43.09 and 83.37. 
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d. A 95% confidence interval for the difference between the true average strengths for the two types of 

joints is ( ) ( ) ( )2 2

.025,

9.59 5.96
80.95 63.23

10 10
t ν− ± + .  The approximate degrees of freedom is 

( )
( ) ( )

291.9681 35.5216
10 10

2 291.9681 35.5216
10 10

15.05 15

9 9

ν
+

= =

+

 , and .025,15 2.131t = .  The interval is, then, 

( )( ) ( )17.72 2.131 3.57 17.72 7.61 10.11,25.33± = ± = .  With 95% confidence, we can say that the true 
average strength for joints without side coating exceeds that of joints with side coating by between 
10.11 and 25.33 lb-in./in. 

 
73. Let μ1 and μ2 denote the true mean zinc mass for Duracell and Energizer batteries, respectively. We want to 

test the hypotheses H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 ≠ 0. Assuming that both zinc mass distributions are 

normal, we’ll use a two-sample t test; the test statistic is 0
2 2 2 2
1 2

( ) (138.52 149.07) 0
(7.76) (1.52)

1 205

x yt
s s
m n

− − ∆ − −
==

++

= –5.19. 

The textbook’s formula for df gives ν = 14. The P-value is P(T14 ≤ –5.19) ≈ 0. Hence, we strongly reject H0 
and we conclude the mean zinc mass content for Duracell and Energizer batteries are not the same (they do 
differ). 

 
 
74. This exercise calls for a paired analysis.  First compute the difference between the amount of cone 

penetration for commutator and pinion bearings for each of the 17 motors.  These 17 differences are 
summarized as follows: n = 17, 4.18d = − , sD = 35.85, where d = (commutator value – pinion value).  Then 

.025,16 2.120t = , and the 95% confidence interval for the population mean difference between penetration for 
the commutator armature bearing and penetration for the pinion bearing is: 

( ) ( )35.854.18 2.120 4.18 18.43 22.61,14.25
17

 − ± = − ± = − 
 

.  We would have to say that the population mean 

difference has not been precisely estimated.  The bound on the error of estimation is quite large.  Also, the 
confidence interval spans zero.  Because of this, we have insufficient evidence to claim that the population 
mean penetration differs for the two types of bearings. 

 
 
75. Since we can assume that the distributions from which the samples were taken are normal, we use the two-

sample t test.  Let μ1 denote the true mean headability rating for aluminum killed steel specimens and μ2 

denote the true mean headability rating for silicon killed steel.  Then the hypotheses are 0 1 2: 0H µ µ− =  v. 

a 1 2: 0H µ µ− ≠ .  The test statistic is .66 .66 2.25
.03888 .047203 .086083

t − −
= = = −

+
.  The approximate 

degrees of freedom are ( )
( ) ( )

2

2 2

.086083
57.5 57

.03888 .047203
29 29

ν = =

+


.  The two-tailed P-value ≈ 2(.014) = .028, 

which is less than the specified significance level, so we would reject H0.  The data supports the article’s 
authors’ claim. 
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76. Let μ1 and μ2 denote the true average number of cycles to break for polyisoprene and latex condoms, 

respectively. (Notice the order has been reversed.) We want to test the hypotheses H0: μ1 – μ2 = 1000 versus 
Ha: μ1 – μ2 > 1000. Assuming that both cycle distributions are normal, we’ll use a two-sample t test; the test 

statistic is 0
2 2 2 2
1 2

( ) (5805 4
(3

358) 0
(2218)990)

20 20

x y
s s

t

m n

− − ∆ − −
=

++

= = 2.40. 

The textbook’s formula for df gives ν = 29. The P-value is P(T29 ≥ 2.40) ≈ .012. Hence, we reject H0 and 
we conclude that the true average number of cycles to break for polyisoprene condoms exceeds the average 
for latex condoms by more than 1000 cycles. 
 

 
77.  

a. The relevant hypotheses are 0 1 2: 0H µ µ− =  v. a 1 2: 0H µ µ− ≠ .  Assuming both populations have 
normal distributions, the two-sample t test is appropriate.  m = 11, 98.1x = , s1 = 14.2, n = 15, 

129.2y = , s2 = 39.1. The test statistic is 31.1 31.1 2.84
18.3309 101.9207 120.252

t − −
= = = −

+
.  The 

approximate degrees of freedom ( )
( ) ( )

2

2 2

120.252
18.64 18

18.3309 101.9207
10 14

ν = =

+


.  From Table A.8, the 

two-tailed P-value ≈ 2(.006) = .012.  No, obviously the results are different. 
 
b. For the hypotheses 0 1 2: 25H µ µ− = −  v. a 1 2: 25H µ µ− < − , the test statistic changes to 

( )31.1 25
.556

120.252
t

− − −
= = − .  With df = 18, the P-value ≈ P(T < –.6) = .278.  Since the P-value is greater 

than any sensible choice of α, we fail to reject H0.  There is insufficient evidence that the true average 
strength for males exceeds that for females by more than 25 N. 

 
 
78.  

a. The relevant hypotheses are 0 1 2: 0H µ µ∗ ∗− =  (which is equivalent to saying 1 2 0µ µ− = ) versus 

a 1 2: 0H µ µ∗ ∗− ≠  (aka 1 2 0µ µ− ≠ ).  The pooled t test is based on df = m + n – 2 = 8 + 9 – 2 = 15.  The 

pooled variance is =2
ps  2 2

1 2
1 1

2 2
m ns s

m n m n
− −   +   + − + −   

 ( ) ( )2 28 1 9 14.9 4.6
8 9 2 8 9 2

− −   +   + − + −   
= 22.49, 

so sp = 4.742.  The test statistic is 
1 1 1 1

8 9

* * 18.0 11.0 3.04 3.0
4.742p m n

x yt
s

− −
= = = ≈

+ +
.  From Table A.7, the P-

value associated with t = 3.0 is 2P(T > 3.0) = 2(.004) = .008.  At significance level .05, H0 is rejected 
and we conclude that there is a difference between 1µ

∗  and 2µ
∗ , which is equivalent to saying that there 

is a difference between 1µ  and 2µ . 
 

b. No.  The mean of a lognormal distribution is ( )2 /2eµ σµ
∗ ∗+

= , where µ∗  and σ ∗  are the parameters of 
the lognormal distribution (i.e., the mean and standard deviation of ln(x)).  So when 1 2σ σ∗ ∗= , then 

1 2µ µ∗ ∗=  would imply that 1 2µ µ= .  However, when 1 2σ σ∗ ∗≠ , then even if 1 2µ µ∗ ∗= , the two means 1µ  
and 2µ (given by the formula above) would not be equal. 
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79. To begin, we must find the % difference for each of the 10 meals! For the first meal, the % difference is 

measured stated 212 180
stated 180

− −
= = .1778, or 17.78%. The other nine percentage differences are 45%, 

21.58%, 33.04%, 5.5%, 16.49%, 15.2%, 10.42%, 81.25%, and 26.67%.   
We wish to test the hypotheses H0: μ = 0 versus Ha: μ ≠ 0, where μ denotes the true average percent 
difference for all supermarket convenience meals. A normal probability plot of these 10 values shows some 
noticeable deviation from linearity, so a t-test is actually of questionable validity here, but we’ll proceed 
just to illustrate the method. 

For this sample, n = 10, x = 27.29%, and s = 22.12%, for a t statistic of 27.29 0
22. / 1012

t −
= = 3.90.                 

At df = n – 1 = 9, the P-value is 2P(T9 ≥ 3.90) ≈ 2(.002) = .004. Since this is smaller than any reasonable 
significance level, we reject H0 and conclude that the true average percent difference between meals’ stated 
energy values and their measured values is non-zero.  
 

80. Since the P-value, .001, is very small, we would reject the null hypothesis of equal population means and 
conclude instead that the true mean arsenic concentration measurements are significantly different for the 
two methods.  That is, the methods disagree. Assuming sample “1” corresponds to the lab method, the CI 
says we’re 95% confident that the true mean arsenic concentration measurement using the lab method is 
between 6.498 μg/L and 11.102 μg/L higher than using the field method. 

 
 
81. The normal probability plot below indicates the data for good visibility does not come from a normal 

distribution. Thus, a t-test is not appropriate for this small a sample size. (The plot for poor visibility isn’t 
as bad.) That is, a pooled t test should not be used here, nor should an “unpooled” two-sample t test be used 
(since it relies on the same normality assumption). 
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82.  

a. A 95% CI for μ37,dry = 325.73 ± t.025,5(34.97)/ 6  = 325.73 ± 2.571(14.276) = (289.03, 362.43). We are 
95% confident that the true average breaking force in a dry medium at 37° is between 289.03 N and 
362.43 N. 

 
b. The relevant estimated df = 9. A 95% CI for μ37,dry – μ37,wet = (325.73 – 306.09) ± 

t.025,9 6
97.41

6
97.34 22

+ = (–30.81,70.09).  We are 95% confident that the true average breaking force 

in a dry medium at 37° is between 30.81 N less and 70.09 N more than the true average breaking force 
in a wet medium at 37°. 

 
c. We wish to test H0: μ37,dry – μ22,dry = 0 v. Ha: μ37,dry – μ22,dry > 0. The relevant test statistic is t = 

6
08.39

6
97.34

100)60.17073.325(
22

+

−−
= 2.58. The estimated df = 9 again, and the approximate P-value is .015. 

Hence, we reject H0 and conclude that true average force in a dry medium at 37° is indeed more than 
100 N greater than the average at 22°. 

 
83. We wish to test H0: 21 µµ =  versus Ha: 21 µµ ≠  

Unpooled: 
With H0: 021 =− µµ  v. Ha: 021 ≠− µµ , we will reject H0 if α<− valuep .  

( )
( ) ( )

1595.15

1113

2

12
52.12

14
79.

2

12
52.1

14
79.

22

22

↓=

+

+
=ν , and the test statistic 81.1

4869.
88.36.948.8

12
52.1

14
79. 22

−=
−

=
+

−
=t  leads to a P-

value of about 2P(T15 > 1.8) =2(.046) = .092.  
Pooled: 
The degrees of freedom are 24212142 =−+=−+= nmν   and the pooled variance 

is ( ) ( ) 3970.152.1
24
1179.

24
13 22 =






+






 , so 181.1=ps .  The test statistic is 

89.1
465.

88.

181.1

88.

12
1

14
1

−≈
−

=
+

−
=t .  The P-value = 2P(T24 > 1.9 ) = 2(.035) = .070.   

With the pooled method, there are more degrees of freedom, and the P-value is smaller than with the 
unpooled method. That is, if we are willing to assume equal variances (which might or might not be valid 
here), the pooled test is more capable of detecting a significant difference between the sample means. 
 

 
84. Because of the nature of the data, we will use a paired t test.  We obtain the differences by subtracting 

intake value from expenditure value.  We are testing the hypotheses H0: μD = 0 vs Ha: μD ≠ 0.  The test 

statistic 1.757 3.88
1.1 / 797

t = =  with df = n – 1 = 6 leads to a P-value of 2P(T > 3.88) ≈ .008.  Using either 

significance level .05 or .01, we would reject the null hypothesis and conclude that there is a difference 
between average intake and expenditure.  However, at significance level .001, we would not reject. 
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85.  

a. With n denoting the second sample size, the first is m = 3n.  We then wish ( ) 900 40020 2 2.58
3n n

= + , 

which yields n = 47, m = 141. 

b. We wish to find the n which minimizes /2
900 4002

400
z

n nα +
−

, or equivalently, the n which minimizes 

900 400
400 n n

+
−

.  Taking the derivative with respect to n and equating to 0 yields 

( ) 2 2900 400 400 0n n− −− − = , whence ( )229 4 400n n= − , or 25 3200 640,000 0n n+ − = .  The solution 
is n = 160, and thus m = 400 – n = 240. 

 
86.  

a. By appearing to administer the same pair of treatments to all children, any placebo or psychosomatic 
effects are reduced. For example, if parents are generally disposed to believe that injections are more 
effective, then those whose kids got only an injection (i.e., different from this study) might be more 
prone to ignoring flu symptoms, while parents of kids in the “nasal spray group” (again, in a different 
study design) might be more apt to notice flu symptoms. 

b. Let p1 = the true probability a child contracts the flu after vaccination by injection; define p2 similarly 
for vaccination by nasal spray.  Then n1 = n2 = 4000, 1p̂  = 344/4000 = .086, 2p̂ = 156/4000 = .039, and 
the pooled proportion is p̂  = .0625. Consider the hypotheses H0: p1 – μ2 = 0 v. Ha: p1 – p2 > 0. The 

two-proportion z test statistic is
[ ]1 1

4000 4000

.086 .039
.0625(.9375)

z −
=

+
 = 8.68, so the P-value is effectively 0 

and we’d reject H0 at any significance level. Hence, we conclude that kids are more likely to get the 
flue after vaccination by injection than after vaccination by nasal spray.  Start using nasal spray 
vaccinations! 

 
 

87. We want to test the hypothesis H0: μ1 ≤ 1.5μ2 v. Ha: μ1 > 1.5μ2 — or, using the hint, H0: θ ≤ 0 v. Ha: θ > 0. 

Our point estimate of θ is 21 5.1ˆ XX −=θ , whose estimated standard error equals 
2

2
22

1

2
1 )5.1()ˆ(

n
s

n
s

s +=θ , 

using the fact that 
2

2
22

1

2
1 )5.1()ˆ(

nn
V

σσ
θ += . Plug in the values provided to get a test statistic t = 

8975.2
0)15.14(5.163.22 −−  ≈ 0.83. A conservative df estimate here is ν = 50 – 1 = 49. Since P(T ≥ 0.83) ≈ .20 

and .20 > .05, we fail to reject H0 at the 5% significance level. The data does not suggest that the average 
tip after an introduction is more than 50% greater than the average tip without introduction. 
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88.  

a. For the paired data on pitchers, n = 17, d = 4.066, and sd = 3.955. t.025,16 = 2.120, and the resulting 
95% CI is (2.03, 6.10). We are 95% confident that the true mean difference between dominant and 
nondominant arm translation for pitchers is between 2.03 and 6.10. 

b. For the paired data on position players, n = 19, d = 0.233, and sd = 1.603. t.025,18 = 2.101, and the 
resulting 95% CI is (–0.54, 1.01). We are 95% confident that the true mean difference between 
dominant and nondominant arm translation for position players is between 2.03 and 6.10. 

 
c. Let μ1 and μ2 represent the true mean differences in side-to-side AP translation for pitchers and 

position players, respectively. We wish to test the hypotheses H0: μ1 – μ2 = 0 v. Ha: μ1 – μ2 > 0. The 
data for this analysis are precisely the differences utilized in parts a and b. Hence, the test statistic is t 

=

19
603.1

17
955.3

233.0066.4
22

+

− = 3.73. The estimated df = 20 (using software), and the corresponding P-value is 

P(T > 3.73) = .001. Hence, even at the 1% level, we concur with the authors’ assessment that this 
difference is greater, on average, in pitchers than in position players. 

 

89. 0 0∆ = , 1 2 10σ σ= = , d = 1, 200 14.142
n n

σ = = , so 1.645
14.142

nβ
 

= Φ −  
 

, giving β = .9015, .8264, 

.0294, and .0000 for n = 25, 100, 2500, and 10,000 respectively.  If the μis referred to true average IQs 
resulting from two different conditions, 1 2 1µ µ− =  would have little practical significance, yet very large 
sample sizes would yield statistical significance in this situation. 

 
 

90. For the sandstone sample, n = 20, x  = 2.36, and s1 = 1.21. For the shale sample, m = 21, y  = 0.485, and s2 
= 0.157. To construct a 95% confidence interval for the difference in population means, the df formula 
from the textbook gives ν = 19. The resulting 95% CI is (1.306, 2.445). That is, we are 95% confident that 
the average roughness of sandstone (on this particular scale) is between 1.306 and 2.445 units higher than 
the average roughness of shale. In particular, since the interval does not include 0, the data suggest that 
average roughness is not the same for the two stone types.  

 
 

91. 0 1 2:H p p=  will be rejected at level α in favor of a 1 2:H p p>  if z ≥ zα. With 250
1 2500ˆ .10p = = and 

167
2 2500ˆ .0668p = = , ˆ .0834p =  and .0332 4.2

.0079
z = = , so H0 is rejected at any reasonable α level.  It appears 

that a response is more likely for a white name than for a black name. 
 
 

92. The computed value of z is 34 46 1.34
34 46

z −
= = −

+
.  A lower tailed test would be appropriate, so the P-value 

( )1.34 .0901 .05= Φ − = > , so we would not judge the drug to be effective. 
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93.  

a. Let 1µ  and 2µ denote the true average weights for operations 1 and 2, respectively.  The relevant 
hypotheses are 0 1 2: 0H µ µ− =  v. a 1 2: 0H µ µ− ≠ .  The value of the test statistic is 

( )
( ) ( )2 2

1402.24 1419.63 17.39 17.39 6.43.
4.011363 3.30672 7.31808310.97 9.96

30 30

t
− − −

= = = = −
+

+

  

At df =  ( )
( ) ( )

2

2 2

7.318083
57.5 57

4.011363 3.30672
29 29

ν = =

+

 , 2P(T ≤ –6.43) ≈ 0, so we can reject H0 at level 

.05.  The data indicates that there is a significant difference between the true mean weights of the 
packages for the two operations. 

 
b. H0: μ1 = 1400 will be tested against Ha: μ1 > 1400 using a one-sample t test with test statistic  

1

140
/

0xt
s m
−

= .  With degrees of freedom = 29, we reject H0 if t ≥ t.05,29 = 1.699.  The test statistic value 

is 1402.24 1400 2.24 1.1
2.0010.97 30/

t −
= = = .  Because 1.1 < 1.699, H0 is not rejected.  True average weight does 

not appear to exceed 1400. 
 
 

94. First, ( ) 1 2 1 1V X Y
m n m n
λ λ λ  − = + = + 

 
 under H0, where λ can be estimated for the variance by the pooled 

estimate ˆ
pooled

mX nY
m n

λ +
=

+
. With the obvious point estimates 1̂ Xλ = and 2̂ Yλ = , we have a large-sample 

test statistic of ( ) 0
1 1ˆ

pooled

X Y X YZ
X Y

m n n m
λ

− − −
= =

 + + 
 

.   

With x = 1.616 and y = 2.557, z = –5.3 and P-value = P(|Z| ≥ |–5.3|) = 2Φ(–5.3) ≈ 0, so we would certainly 
reject H0: 1 2λ λ=  in favor of Ha: 1 2λ λ≠ . 

 
 

95. A large-sample confidence interval for λ1 – λ2 is 
nm

z 21
2/21

ˆˆ
)ˆˆ(

λλ
λλ α +±− , or 

n
y

m
xzyx +±− 2/)( α . 

With x = 1.616 and y = 2.557, the 95% confidence interval for λ1 – λ2 is –.94 ± 1.96(.177) = –.94 ± .35 =   
(–1.29, –.59).  
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CHAPTER 10 
 

Section 10.1 
 
1. The computed value of F is 

MSTr 2673.3 2.44
MSE 1094.2

f = = = .  Degrees of freedom are I – 1 = 4 and I(J – 1) = 

(5)(3) = 15. From Table A.9, .05,4,15 3.06F =  and .10,4,15 2.36F = ; since our computed value of 2.44 is 
between those values, it can be said that .05 < P-value < .10. Therefore, H0 is not rejected at the α = .05 
level. The data do not provide statistically significant evidence of a difference in the mean tensile strengths 
of the different types of copper wires. 

 
2.  
 

Type of Box x  s 
1 713.00 46.55 
2 756.93 40.34 
3 698.07 37.20 
4 682.02 39.87 

 
       Grand mean = 712.51 

 

( ) ( ) ( )2 2 26MSTr 713.00 712.51 756.93 712.51 698.07 712.51
4 1

= − + − + −−  
( )2682.02 712.51 6,223.0604+ − =  

( ) ( ) ( ) ( )2 2 2 21MSE 46.55 40.34 37.20 39.87 1,691.9188
4
 = + + + =   

MSTr 6,223.0604 3.678
MSE 1,691.9188

f = = =  

At df = (3, 20), 3.10 < 3.678 < 4.94 ⇒ .01 < P-value < .05. In particular, since P-value < α, we reject H0.  
There is a difference in mean compression strengths among the four box types. 

 
3. With μi = true average lumen output for brand i bulbs, we wish to test 0 1 2 3:H µ µ µ= =  v. Ha: at least two 

μi’s are different. 2 591.2ˆMSTr 295.60
2Bσ= = = , 2 4773.3ˆMSE 227.30

21Wσ= = = , so 

MSTr 295.60 1.30
MSE 227.30

f = = = .  

For finding the P-value, we need degrees of freedom I – 1 = 2 and I (J – 1) = 21. In the 2nd row and 21st 
column of Table A.9, we see that .10,2,211.30 2.57F< = , so the P-value > .10.  Since .10 is not < .05, we 
cannot reject H0.  There are no statistically significant differences in the average lumen outputs among the 
three brands of bulbs. 
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4. Let μi denote the true mean foam density from the ith manufacturer (i = 1, 2, 3, 4). The hypotheses are    
H0: μ1 = μ2 = μ3 = μ4 versus Ha: at least two of the μi’s are different. From the data provided, 

1· 2· 3· 4·29.8, 27.4, 25.95, 27.15x x x x= = = = ; s1 = .849, s2 = .424, s3 = 1.63, and s4 = 2.33. From these we 

find SSTr = 15.60 and SSE = 8.99, so MSTr = 
SSTr 15.60

1 4 1I
=

− −
= 5.20, MSE = SSE 8.99

( 1) 4(2 1)I J
=

− −
=2.25, and 

finally f = MSTr/MSE = 2.31. 
Looking at the F3,4 distribution, 2.31 is less than F.10,3,4 =  4.19, so the P-value associated with this 
hypothesis test is more than .10. Thus, at any reasonable significance level, we would fail to reject H0. The 
data provided do not provide statistically significant evidence of a difference in the true mean foam 
densities for these four manufacturers. 

 
 
5. μi = true mean modulus of elasticity for grade i (i = 1, 2, 3).  We test 0 1 2 3:H µ µ µ= =  vs. Ha: at least two 

μi’s are different.  Grand mean = 1.5367, 

( ) ( ) ( )2 2 210MSTr 1.63 1.5367 1.56 1.5367 1.42 1.5367 .1143
2
 = − + − + − =

,

( ) ( ) ( )2 2 21MSE .27 .24 .26 .0660
3
 = + + =  , MSTr .1143 1.73

MSE .0660
f = = = .  At df = (2,27), 1.73 < 2.51 ⇒ the 

P-value is more than .10. Hence, we fail to reject H0.  The three grades do not appear to differ significantly.   
 
 
6.  
 

Source df SS MS F 
Treatments 3 509.112 169.707 10.85 
Error 36 563.134 15.643  
Total 39 1,072.256   

Use the df = (3,30) block of Table A.9, since df = 36 is not available. Since 10.85 > 7.05, P-value < .001. 
So, we strongly reject H0 in favor of Ha: at least two of the four means differ. 

 
7. Let μi denote the true mean electrical resistivity for the ith mixture (i = 1, …, 6).  

The hypotheses are H0: μ1 = … = μ6 versus Ha: at least two of the μi’s are different. 
There are I = 6 different mixtures and J = 26 measurements for each mixture. That information provides the 
df values in the table. Working backwards, SSE = I(J – 1)MSE = 2089.350; SSTr = SST – SSE = 3575.065; 
MSTr = SSTr/(I – 1) = 715.013; and, finally, f = MSTr/MSE = 51.3.  
 

Source df SS MS f 
Treatments 5 3575.065 715.013 51.3 
Error 150 2089.350 13.929  
Total 155 5664.415   

 
The P-value is P(F5,150 ≥ 51.3) ≈ 0, and so H0 will be rejected at any reasonable significance level. There is 
strong evidence that true mean electrical resistivity is not the same for all 6 mixtures. 
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8. The summary quantities are  1 2332.5x ⋅ = , 2 2576.4x ⋅ = , 3 2625.9x ⋅ = , 4 2851.5x ⋅ = , 5 3060.2x ⋅ = , 

13,446.5x⋅⋅ = , so CF = 5,165,953.21, SST = 75,467.58, SSTr = 43,992.55, SSE = 31,475.03, 
43,992.55MSTr 10,998.14

4
= = , 31,475.03MSE 1049.17

30
= =  and  10,998.14 10.48

1049.17
f = = .  (These 

values should be displayed in an ANOVA table as requested.)  
At df = (4,30), 10.48 > 5.53 ⇒ P-value < .001. Hence, 0 1 2 3 4 5:H µ µ µ µ µ= = = =  is rejected.  There are 
differences in the true average axial stiffness for the different plate lengths. 

 
 
9. The summary quantities are  1 34.3x ⋅ = , 2 39.6x ⋅ = , 3 33.0x ⋅ = , 4 41.9x ⋅ = ,  148.8x⋅⋅ = , 2 946.68ijxΣΣ = , so 

( )2148.8
CF 922.56

24
= = , SST 946.68 922.56 24.12= − = , ( ) ( )2 234.3 ... 41.9

SSTr 922.56 8.98
6

+ +
= − = , 

SSE 24.12 8.98 15.14= − = . 
 

Source df SS MS F 
Treatments 3 8.98 2.99 3.95 
Error 20 15.14 .757  
Total 23 24.12   

 
Since .05,3,20 .01,3,203.10 3.95 4.94F F= < < = , .01 < P-value < .05, and H0 is rejected at level .05. 

 
10.  

a. ( ) ( )i i
E X

E X
I I

µ
µ⋅

⋅⋅

Σ Σ
= = = . 

 

b. ( ) ( ) ( )
222 2

i i i iE X V X E X
J
σ µ⋅ ⋅ ⋅

 = + = +  . 

 

c. ( ) ( ) ( )
222 2E X V X E X

IJ
σ µ⋅⋅ ⋅⋅ ⋅⋅

 = + = +  . 

 

d. ( )
2 2

2 2 2 2SSTr i iE E J X IJX J IJ
J IJ
σ σµ µ⋅ ⋅⋅

   
 = Σ − = + − +    

   
∑    

( ) ( )22 2 2 2 21i iI J IJ I Jσ µ σ µ σ µ µ= + Σ − − = − + Σ − , so 

( ) ( ) ( )2
2SSTr

MSTr
1 1

iE
E J

I I
µ µ

σ
−

= = +
− −∑ . 

 
e. When H0 is true, 1 iµ µ µ= = = , so ( )2 0iµ µΣ − =  and ( ) 2MSTrE σ= .  When H0 is false,  

( )2 0iµ µΣ − > , so ( ) 2MSTrE σ>  (on average, MSTr overestimates 2σ ). 
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Section 10.2 
 

11. .05,5,15 4.37Q = , 272.84.37 36.09
4

w = = . The brands seem to divide into two groups: 1, 3, and 4; and 2 

and 5; with no significant differences within each group but all between group differences are significant. 
3 1 4  2 5 

437.5 462.0 469.3  512.8 532.1 
 
 

12. Brands 2 and 5 do not differ significantly from one another, but both differ significantly from brands 1, 3, 
and 4.  While brands 3 and 4 do differ significantly, there is not enough evidence to indicate a significant 
difference between 1 and 3 or 1 and 4. 

3 1 4  2 5 
427.5 462.0 469.3  512.8 532.1 

      

 
 
13. Brand 1 does not differ significantly from 3 or 4, 2 does not differ significantly from 4 or 5, 3 does not 

differ significantly from1, 4 does not differ significantly from 1 or  2, 5 does not differ significantly from 2, 
but all other differences (e.g., 1 with 2 and 5, 2 with 3, etc.) do appear to be significant. 

3 1 4 2 5 
427.5 462.0 469.3 502.8 532.1 

     
     
     

 
14. We’ll use α = .05. In Example 10.3, I = 5 and J = 10, so the critical value is Q.05,5,45 ≈ Q.05,5,40 = 4.04, and 

MSE = 37.926. So, 37.9264.04
10

w ≈ = 7.87. Conveniently, the sample means are already in numerical 

order. Starting with 10.5, the lowest sample mean is only significantly different (by Tukey’s method) from 
the highest mean, 21.6. No other differences are significant. The mean shear bond strengths for treatments 
1 and 5 are significantly different, but no others are. 

 
1·x  2·x  3·x  4·x  5·x  

10.5 14.8 15.7 16.0 21.6 
     

 

15. In Exercise 10.7, I = 6 and J = 26, so the critical value is Q.05,6,150 ≈ Q.05,6,120 = 4.10, and MSE = 13.929. So, 
13.9294.10

26
w ≈ = 3.00. So, sample means less than 3.00 apart will belong to the same underscored set. 

Three distinct groups emerge: the first mixture (in the above order), then mixtures 2-4, and finally mixtures 
5-6. 

14.18 17.94 18.00 18.00  25.74 27.67 
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16.  
a. Since the largest standard deviation (s4 = 44.51) is only slightly more than twice the smallest (s3 = 

20.83) it is plausible that the population variances are equal (see text, top of p. 395). 
 
b. The relevant hypotheses are 0 1 2 3 4 5:H µ µ µ µ µ= = = =  vs. Ha: at least two of the μi’s are different.  

With the given f of 10.48 and associated P-value of 0.000, we can reject H0 and conclude that there is a 
difference in axial stiffness for the different plate lengths. 

 
c. There is no significant difference in the axial stiffness for lengths 4, 6, and 8, and for lengths 6, 8, and 

10, yet 4 and 10 differ significantly.  Length 12 differs from 4, 6, and 8, but does not differ from 10. 
4 6 8 10 12 

333.21 368.06 375.13 407.36 437.17 
     
     

 
 
17. i icθ µ= Σ  where 1 2 .5c c= =  and 3 1c = − , so 1 2 3

ˆ .5 .5 .527x x xθ ⋅ ⋅ ⋅= + − = −  and 2 1.50icΣ = .  With 

.025,27 2.052t =  and MSE = .0660, the desired CI is (from (10.5)) 

( ) ( )( ) ( )
.0660 1.50

.527 2.052 .527 .204 .731, .323
10

− ± = − ± = − − . 

 
18.  

a. Let μi = true average growth when hormone the ith is applied. The hypotheses are 0 1 5: ...H µ µ= =  

versus Ha: at least two of the μi’s are different.  With ( )22 278
3864.20

20
x
IJ
⋅⋅ = =  and 2 4280ijxΣΣ = , SST = 

415.80. ( ) ( ) ( ) ( ) ( )2 2 2 2 22 51 71 70 46 40
4064.50

4
ix

J
⋅ + + + +Σ
= = , so SSTr = 4064.50 – 3864.20 = 200.3, 

and SSE = 415.80 – 200.30 = 215.50.  Thus 200.3MSTr 50.075
4

= = , 215.5MSE 14.3667
15

= = , and 

50.075 3.49
14.3667

f = = .   

At df = (4, 15), 3.05 < 3.49 < 4.89 ⇒ .01 < P-value < .05. In particular, we reject H0 at the α = .05 
level.  There appears to be a difference in the average growth with the application of the different 
growth hormones. 

 

b. .05,5,15 4.37Q = , 14.36674.37 8.28
4

w = = .  The sample means are, in increasing order, 10.00, 11.50, 

12.75, 17.50, and 17.75.  The most extreme difference is 17.75 – 10.00 = 7.75 which doesn’t exceed 
8.28, so no differences are judged significant.  Tukey’s method and the F test are at odds. 

 

19. MSTr = 140, error df = 12, so 140 1680
SSE /12 SSE

f = =  and .05,2,12 3.89F = .  

.05,3,12
MSE SSE3.77 .4867 SSE

60
w Q

J
= = = .  Thus we wish 1680 3.89

SSE
>  (significant f) and 

.4867 SSE 10>  (= 20 – 10, the difference between the extreme ix ⋅ ’s, so no significant differences are 
identified).  These become 431.88 > SSE and SSE > 422.16, so SSE = 425 will work. 
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20. Now MSTr = 125, so 1500
SSE

f = , .4867 SSEw =  as before, and the inequalities become 385.60 > SSE 

and SSE > 422.16. Clearly no value of SSE can satisfy both inequalities. 
 
21.  

a. The hypotheses are H0: μ1 = … = μ6 v.  Ha: at least two of the μi’s are different. Grand mean = 222.167, 
MSTr = 38,015.1333, MSE = 1,681.8333, and f = 22.6.   
At df = (5, 78) ≈ (5, 60), 22.6 ≥ 4.76 ⇒ P-value < .001. Hence, we reject H0.  The data indicate there is 
a dependence on injection regimen. 

 
b. Assume .005,78 2.645t ≈ . 

i) Confidence interval for ( )1
1 2 3 4 5 65µ µ µ µ µ µ− + + + + : ( )

( )2

/2, 1

MSE i
i i I J

c
c x t

Jα −

Σ
Σ ±    

( ) ( ) ( )
1,681.8333 1.2

67.4 2.645 99.16, 35.64
14

= − ± = − − . 

ii) Confidence interval for ( )1
2 3 4 5 64 µ µ µ µ µ+ + + − :  

( ) ( ) ( )
1,681.8333 1.25

61.75 2.645 29.34,94.16
14

= ± =  

 

Section 10.3 
 
22. Summary quantities are  1 291.4x ⋅ = , 2 221.6x ⋅ = , 3 203.4x ⋅ = , 4 227.5x ⋅ = ,  943.9x⋅⋅ = , 49,497.07CF = , 

2 50,078.07ijxΣΣ = , from which SST = 581,  

( ) ( ) ( ) ( )2 2 2 2291.4 221.6 203.4 227.5
SSTr 49,497.07

5 4 4 5
= + + + − 49,953.57 49,497.07 456.50= − = , and 

SSE = 124.50.  Thus 456.50MSTr 152.17
3

= = , 124.50MSE 8.89
18 4

= =
−

, and f = 17.12.  Because 

.001,3,1417.12 F> = 9.73, P-value < .001 and 0 1 4: ...H µ µ= =  is rejected at level .05.  There is a difference in 
true average yield of tomatoes for the four different levels of salinity. 

 
 
23. J1 = 5, J2 = 4, J3 = 4, J4 = 5, 1 58.28x ⋅ = , 2 55.40x ⋅ = , 3 50.85x ⋅ = , 4 45.50x ⋅ = , MSE = 8.89.   

With .05,4,14
MSE 1 1 8.89 1 14.11

2 2ij
i j i j

W Q
J J J J

   
= ⋅ + = +      

   
,  

( ) ( )1 2 12 2.88 5.81x x W⋅ ⋅− ± = ± ; ( ) ( )1 3 13 7.43 5.81x x W⋅ ⋅− ± = ± *; ( ) ( )1 4 14 12.78 5.48x x W⋅ ⋅− ± = ± *; 

( ) ( )2 3 23 4.55 6.13x x W⋅ ⋅− ± = ± ; ( ) ( )2 4 24 9.90 5.81x x W⋅ ⋅− ± = ± *; ( ) ( )3 4 34 5.35 5.81x x W⋅ ⋅− ± = ± . 
A * indicates an interval that doesn’t include zero, corresponding to μ’s that are judged significantly 
different. This underscoring pattern does not have a very straightforward interpretation. 

 
4 3 2 1 
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24. Let μi denote the true average skeletal-muscle activity the ith group (i = 1, 2, 3). The hypotheses are H0: μ1 

= μ2 = μ3 versus Ha: at least two of the μi’s are different.  
From the summary information provided, ··x = 51.10, from which 

2 2
· ·· · ··

1

3 3

1 1
( )SS ( )Tr

i

i

J

i i i
j i

x x x xJ
= = =

= − −=∑∑ ∑ = 797.1. Also, 2 2

1

3 3

1 1
SSE ( 1) )(

i

i
i i

J

ij i i
j

x x J s⋅
= ==

== − −∑∑ ∑ = 1319.7. The 

numerator and denominator df are I –1 = 2 and n – I = 28 – 3 = 25, from which the F statistic is 
MSTr 791.1/ 2
MSE 1319.7 / 25

f = = = 7.55. 

Since F.01,2,25 = 5.57 and F.001,2,25 = 9.22, the P-value for this hypothesis test is between .01 and .001.  There 
is strong evidence to suggest the population mean skeletal-muscle activity for these three groups is not the 
same. 
 
To compare a group of size 10 to a group of size 8, Tukey’s “honestly significant difference” at the .05 

level is .05,3,25
MSE 1 1 52.8 1 13.53

2 10 8 2 10 8
w Q    = + +   

   
≈ = 8.60. So, the “old, active” group has a 

significantly higher mean s-m activity than the other two groups, but young and old, sedentary populations 
are not significantly different in this regard. 
 
 Young  Old sedentary  Old active  
  46.68        47.71     58.24 
 
 

25.  
a. The distributions of the polyunsaturated fat percentages for each of the four regimens must be normal 

with equal variances. 
 
b. We have all the .six , and we need the grand mean: 

( ) ( ) ( ) ( )
..

8 43.0 13 42.4 17 43.1 14 43.5 2236.9 43.017
52 52

x
+ + +

= = = ; 

( ) ( ) ( )2 2 2
. ..SSTr 8 43.0 43.017 13 42.4 43.017i iJ x x= − = − + −∑

( ) ( ) 334.8017.435.4313017.431.4317 22 =−+−+ and 8.334MSTr 2.778
3

= =        

( ) ( ) ( ) ( ) ( )2 2 2 22SSE 1 7 1.5 12 1.3 16 1.2 13 1.2 77.79iJ s= − = + + + =∑  and 77.79MSE 1.621
48

= = .  Then 

MSTr 2.778 1.714
MSE 1.621

f = = =    

Since 20.2714.1 50,3,10. =< F , we can say that the P-value is > .10.  We do not reject the null 
hypothesis at significance level .10 (or any smaller), so we conclude that the data suggests no 
difference in the percentages for the different regimens. 
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26.  

a.  
i: 1 2 3 4 5 6  

Ji: 4 5 4 4 5 4  
ix ⋅ : 56.4 64.0 55.3 52.4 85.7 72.4 386.2x⋅⋅ =  

ix ⋅ : 14.10 12.80 13.83 13.10 17.14 18.10 2 5850.20ijxΣΣ =  
Thus SST = 113.64, SSTr = 108.19, SSE = 5.45, MSTr = 21.64, MSE = .273, f = 79.3.  Since 

.01,5,2079.3 4.10F≥ = , P-value < .01 and 0 1 6:H µ µ= =  is rejected.   
 

b. The modified Tukey intervals are as follows; the first number is i jx x⋅ ⋅−  and the second number is  

.01
MSE 1 1

2ij
i j

W Q
J J

 
= ⋅ +  

 
: 

Pair Interval Pair Interval Pair Interval 

1,2 37.130.1 ±  2,3 37.103.1 ±−  3,5 *37.131.3 ±−  

1,3 44.127. ±  2,4 37.130. ±−  3,6 *44.127.4 ±−  

1,4 44.100.1 ±  2,5 *29.134.4 ±−  4,5 *37.104.4 ±−  

1,5 *37.104.3 ±−  2,6 *37.130.5 ±−  4,6 *44.100.5 ±−  

1,6 *44.100.4 ±−  3,4 44.137. ±  5,6 37.196. ±−  
 

Asterisks identify pairs of means that are judged significantly different from one another. 

c. The confidence interval is 
2

/2, MSE i
i i n I

i

c
c x t

Jα⋅ −Σ ± ∑ .  

1 1 1 1 1 1
1 2 3 4 5 64 4 4 4 2 2 4.16i ic x x x x x x x⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅Σ = + + + − − = − , 

2

.1719i

i

c
J

=∑ , MSE = .273, .025,20 2.086t = .   

The resulting 95% confidence interval is 
( ) ( )( ) ( )4.16 2.845 .273 .1719 4.16 .45 4.61, 3.71− ± = − ± = − − . 

 

27.  

a. Let μi = true average folacin content for specimens of brand i.  The hypotheses to be tested are 

0 1 2 3 4:H µ µ µ µ= = =  vs.  Ha: at least two of the μi’s are different . 2 1246.88ijxΣΣ =  and 

( )22 168.4
1181.61

24
x
n
⋅⋅ = = , so SST = 65.27; 

( ) ( ) ( ) ( )2 2 2 22 57.9 37.5 38.1 34.9
1205.10

7 5 6 6
i

i

x
J

⋅Σ
= + + + = , so 

SSTr 1205.10 1181.61 23.49= − = . 

Source df SS MS F 
Treatments 3 23.49 7.83 3.75 
Error 20 41.78 2.09  
Total 23 65.27   
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With numerator df = 3 and denominator df = 20, .05,3,20 .01,3,203.10 3.75 4.94F F= < < = , so the P-value 
is between .01 and .05. We reject H0 at the .05 level: at least one of the pairs of brands of green tea has 
different average folacin content. 

 
b. With ix ⋅ = 8.27, 7.50, 6.35, and 5.82 for i = 1, 2, 3, 4, we calculate the residuals ij ix x ⋅−  for all 

observations.  A normal probability plot appears below and indicates that the distribution of residuals 
could be normal, so the normality assumption is plausible. The sample standard deviations are 1.463, 
1.681, 1.060, and 1.551, so the equal variance assumption is plausible (since the largest sd is less than 
twice the smallest sd). 

210-1-2

2

1

0

-1

-2

prob

re
si

ds

Normal Probability Plot for ANOVA Residuals

 
 

c. .05,4,20 3.96Q =  and 2.09 1 13.96
2ij

i j

W
J J

 
= ⋅ +  

 
, so the Modified Tukey intervals are: 

Pair Interval Pair Interval 

1,2 .77 2.37±  2,3 1.15 2.45a±  

1,3 1.92 2.25±  2,4 1.68 2.45±  

1,4 2.45 2.25± * 3,4 .53 2.34±  
 

4 3 2 1 
    

 
Only Brands 1 and 4 are significantly different from each other. 
 
 

28. ( ){ } ( )2 2 2 2SSTr 2i i i i i i i ii j i i i i
X X J X X J X X J X X J⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅= Σ Σ − = Σ − = Σ − Σ + Σ

2 2 2 2 2 2 22 2i i i i i ii i i
J X X X nX J X nX nX J X nX⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅ ⋅⋅ ⋅⋅ ⋅ ⋅⋅= Σ − + = Σ − + = Σ − . 
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29. ( ) ( ) ( ) ( )2 2 2 2SSTr i i i ii
E E J X nX J E X nE X⋅ ⋅⋅ ⋅ ⋅⋅= Σ − = Σ −  

( ) ( )( ) ( ) ( )( )2 2

i i iJ V X E X n V X E X⋅ ⋅ ⋅⋅ ⋅⋅
   = Σ + − +      

 
22 2

2 i i
i i

i

J
J n

J n n
µσ σµ

   Σ = + − +    
     

∑  

( ) ( ) 222 2 1
i i i iI J J

n
σ µ α σ µ α= + Σ + − − Σ +    ( ) [ ]22 2 2 11 2 0i i i i iI J J J n

n
σ µ µ α α µ= − + Σ + Σ + Σ − +  

( ) 2 2 2 21 2 0 i iI n J nσ µ µ α µ= − + + + Σ −  2 2( 1) i iI Jσ α= − + Σ , from which E(MSTr) is obtained through 
division by (I – 1). 

 
 
30.  

a. 1 2 0α α= = , 3 1α = − , 4 1α = , so 
( )( )22 2 2

2
8 0 0 1 1

4,
4

φ
+ + − +

= =  φ = 2, and from figure (10.5), 

power ≈ .92, so β ≈ .08. 
 
b. 2 .5Jφ = , so .707 Jφ =  and ( )2 4 1Jν = − .  By inspection of figure (10.5), J = 9 looks to be 

sufficient. 
 
c. 1 2 3 4 5 1, 1µ µ µ µ µ µ= = = = + , so 1

1 5µ µ= + , 1
1 2 3 4 5α α α α= = = = − , 4

4 5α = , 

( )20
252 10

1.60
5

φ = = 1.26φ = , 1 4ν = , 2 45ν = .   

By inspection of figure (10.6), power  ≈ .5, so β ≈ .5. 
 
 

31. With σ = 1 (any other σ would yield the sameφ ), 1 1α = − ,  2 3 0α α= = , 4 1α = ,  

( ) ( ) ( ) ( )( )2 2 2 2

2
1 5 1 4 0 4 0 5 1

2.5
4

φ
− + + +

= = , 1.58φ = , 1 3ν = , 2 14ν = , and power ≈ .65. 

 
 

32. With Poisson data, the ANOVA should be performed using ij ijy x= .  This gives 1 15.43y ⋅ = , 2 17.15y ⋅ = , 

3 19.12y ⋅ = , 4 20.01y ⋅ = , 71.71y⋅⋅ = , 2 263.79ijyΣΣ = , CF = 257.12, SST = 6.67, SSTr = 2.52, SSE = 4.15, 
MSTr = .84, MSE = .26, f = 3.23.  Since 3.23 ≈ F.05,3,16, P-value ≈ .05 > .01 and H0 cannot be rejected at the 
.01 level.  The expected number of flaws per reel does not seem to depend upon the brand of tape. 

 
 

33. ( )( ) 1 1xg x x nu u
n

 = − = − 
 

 where xu
n

= , so ( ) 1/2
( ) 1h x u u du

−
= −  ∫ .  From a table of integrals, this 

gives ( )( ) arcsin arcsin xh x u
n

 
= =   

 
 as the appropriate transformation. 

 

34. ( )
2

2 2 2 2 2 21MSTr .
1 1A A A

IJ n JE n J
I n I

σ σ σ σ σ σ
  −

= + − = + = + − − 
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Supplementary Exercises 
 
35.  

a. The hypotheses are 0 1 2 3 4:H µ µ µ µ= = =  v.  Ha: at least two of the μi’s are different. The calculated 
test statistic is f = 3.68. Since F.05,3,20 = 3.10 < 3.68 < F.01,3,20 = 4.94, the P-value is between .01 and 
.05. Thus, we fail to reject H0 at α = .01.  At the 1% level, the means do not appear to differ 
significantly. 

 
b. We reject H0 when the P-value ≤ α.  Since .029 is not < .01, we still fail to reject H0. 

 
36. Let µ1, µ2, µ3 denote the population mean cortisol concentrations for these three groups. The hypotheses are 

H0: µ1 = µ2 = µ3 versus  Ha: at least two of the μi’s are different.  

The grand mean is ..
47(174.7) 36(160.2) 50(153.5) 21653.1

47 36 50 133
ijx

x
n

+ +
= = =

+ +
∑  = 162.8. From this,  

SSTr = 2 2
. .. . ..

1 1 1
) )( (

iJI

i i i

I

i j i
x x xJ x

= = =

− = −∑∑ ∑ = 47(174.7 – 162.8)2 + 36(160.2 – 162.8)2 + 50(153.5 – 162.8)2 = 

11223.53, while  

SSE =  
1

.
1

2

1

2( () 1)
iJI

ij i

I

i
i j i

iJx x s
= = =

− = −∑∑ ∑ = (47 – 1)(50.9)2 + (36 – 1)(37.2)2 + (50 – 1)(45.9)2 = 270845.35. 

The calculated value of the test statistic is MSTr SSTr / ( 1) 11223.53 / (3 1)
MSE SSE / ( ) 270845.35 / (133 3)

If
n I
− −

= = =
− −

= 2.69. Using 

approximate df (2, 130) ≈ (2, 100), 2.36 < 2.69 < 3.09 ⇒ .05 < P-value < .10. In particular, we cannot 
reject H0 at the .05 level: there is insufficient evidence to conclude that the population mean cortisol levels 
differ for these three groups. [From software, the P-value is .071.] 

 
37. Let μi = true average amount of motor vibration for each of five bearing brands.  Then the hypotheses are 

0 1 5: ...H µ µ= =  vs.  Ha: at least two of the μi’s are different.  The ANOVA table follows: 
Source df SS MS F 
Treatments 4 30.855 7.714 8.44 
Error 25 22.838 0.914  
Total 29 53.694   

8.44 > F.001,4,25 = 6.49, so P-value < .001 < .05, so we reject H0.  At least two of the means differ from one 
another.  The Tukey multiple comparisons are appropriate. .05,5,25 4.15Q = from Minitab output; or, using 

Table A.10, we can approximate with .05,5,24 4.17Q = .  4.15 .914 / 6 1.620ijW = = . 
 

Pair i jx x⋅ ⋅−  Pair i jx x⋅ ⋅−  

1,2 -2.267* 2,4 1.217 
1,3 0.016 2,5 2.867* 
1,4 -1.050 3,4 -1.066 
1,5 0.600 3,5 0.584 
2,3 2.283* 4,5 1.650* 

 
*Indicates significant pairs. 

 
5 3 1 4 2 
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38. 1 15.48x ⋅ = , 2 15.78x ⋅ = , 3 12.78x ⋅ = , 4 14.46x ⋅ = , 5 14.94x ⋅ =  73.44x⋅⋅ = , so CF = 179.78, SST = 3.62, 

SSTr = 180.71 – 179.78 = .93, SSE = 3.62 – .93 = 2.69. 
 

Source df SS MS F 
Treatments 4 .93 .233 2.16 
Error 25 2.69 .108  
Total 29 3.62   

 
Since 2.16 < F.10,4,25 = 2.18, P-value > .10 > .05. Do not reject H0 at level .05. 

 

39. 2.63 2.13 2.41 2.49ˆ 2.58 .165
4

θ + + +
= − = , .025,25 2.060t = , MSE = .108, and 

( ) ( ) ( ) ( ) ( )2 2 2 2 22 1 .25 .25 .25 .25 1.25icΣ = + − + − + − + − = , so a 95% confidence interval for θ  is 

( )( ) ( )
.108 1.25

.165 2.060 .165 .309 .144,.474
6

± = ± = − .  This interval does include zero, so 0 is a plausible 

value for θ. 
 
 
40. 1 2 3 4 5 1,µ µ µ µ µ µ σ= = = = − , so 2

1 5µ µ σ= − , 2
1 2 3 5α α α σ= = = , 3

4 5 5α α σ= = − .  Then  

2
2

2
iJ

I
αφ
σ

= ∑  ( ) ( )2 232
5 5

2 2

3 26 1.632
5

σ σ
σ σ

 −
 = + =
  

 and 1.28φ = , 1 4ν = , 2 25ν = .  By 

inspection of figure (10.6), power ≈ .48, so β ≈ .52. 
 
 
41. This is a random effects situation. 2

0 : 0AH σ =  states that variation in laboratories doesn’t contribute to 
variation in percentage.  SST = 86,078.9897 – 86,077.2224 = 1.7673, SSTr = 1.0559, and SSE = .7114.    
At df = (3, 8), 2.92 < 3.96 < 4.07 ⇒ .05 < P-value < .10, so H0 cannot be rejected at level .05.  Variation in 
laboratories does not appear to be present.   

 
42.  

a. μi = true average CFF for the three iris colors.  Then the hypotheses are 0 1 2 3:H µ µ µ= =  vs.  Ha: at 
least two of the μi’s are different.  SST = 13,659.67 – 13,598.36 = 61.31, 

( ) ( ) ( )2 2 2204.7 134.6 169.0
SSTr 13,598.36 23.00

8 5 6

 
 = + + − =
 
 

 The ANOVA table follows: 

 
Source df SS MS F 
Treatments 2 23.00 11.50 4.803 
Error 16 38.31 2.39  
Total 18 61.31   

 
Because .05,2,16 .01,2,163.63 4.803 6.23F F= < < = , .01 < P-value < .05, so we reject H0.  There are 
differences in CFF based on iris color. 
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b. .05,3,16 3.65Q =  and 2.39 1 13.65
2ij

i j

W
J J

 
= ⋅ +  

 
, so the modified Tukey intervals are: 

Pair ( )i j ijx x W⋅ ⋅− ±  

1,2 1.33 2.27− ±  

1,3 2.58 2.15− ± * 

2,3 1.25 2.42− ±  
 

Brown Green Blue 
25.59 26.92 28.17 

   

 
The CFF is only significantly different for brown and blue iris colors. 

 
 
43. ( )( )( ) ( )( )( ).05, 1,1 MSE 2 2.39 3.63 4.166I n II F − −− = = .  For 1 2µ µ− , c1 = 1, c2 = –1, and c3 = 0, so 

2 1 1 .570
8 5

i

i

c
J

= + =∑ .  Similarly, for 1 3µ µ− , 
2 1 1 .540

8 6
i

i

c
J

= + =∑ ; for 2 3µ µ− , 

2 1 1 .606
5 6

i

i

c
J

= + =∑ , and for 2 2 3.5 .5µ µ µ+ − , ( )22 2 2 1.5 .5 .498
8 5 6

i

i

c
J

−
= + + =∑ . 

 
Contrast Estimate Interval 

1 2µ µ−  25.59 – 26.92 = –1.33 ( ) ( )( ) ( )1.33 .570 4.166 3.70,1.04− ± = −  

1 3µ µ−  25.59 – 28.17 = –2.58 ( ) ( )( ) ( )2.58 .540 4.166 4.83, .33− ± = − −  

2 3µ µ−  26.92 – 28.17 = –1.25 ( ) ( )( ) ( )1.25 .606 4.166 3.77,1.27− ± = −  

2 2 3.5 .5µ µ µ+ −  –1.92 ( ) ( )( ) ( )1.92 .498 4.166 3.99,0.15− ± = −  
 
 The contrast between 1µ  and 3µ , since the calculated interval is the only one that does not contain 0. 
 
 
44.  

Source df SS MS F 
Treatments 3 24,937.63 8312.54 1117.8 
Error 8 59.49 7.44  
Total 11 24,997.12   

 
Because 1117.8 > F.001,3,8 = 15.83, P-value < .001 and 0 1 2 3 4:H µ µ µ µ= = =  is rejected.   

.05,4,8 4.53Q = , so 7.444.53 7.13
3

w = = .  The four sample means are 4 29.92x ⋅ = , 1 33.96x ⋅ = , 

3 115.84x ⋅ = , and 2 129.30x ⋅ = .  Only 1 4 7.13x x⋅ ⋅− < , so all means are judged significantly different from 
one another except for 4µ  and 1µ  (corresponding to  PCM and OCM). 
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45. ( )ij ijY Y c X X⋅⋅ ⋅⋅− = −  and ( )i iY Y c X X⋅ ⋅⋅ ⋅ ⋅⋅− = − , so each sum of squares involving Y will be the 
corresponding sum of squares involving X multiplied by c2.  Since F is a ratio of two sums of squares, c2 
appears in both the numerator and denominator. So c2 cancels, and F computed from Yij’s = F computed 
from Xij’s. 

 
 
46. The ordered residuals are –6.67, –5.67, –4, –2.67, –1, –1, 0, 0, 0, .33, .33, .33, 1, 1, 2.33, 4, 5.33, 6.33.  The 

corresponding z percentiles are –1.91, –1.38, –1.09, –.86, –.67, –.51, –.36, –.21, –.07, .07, .21, .36, .51, .67, 
.86, 1.09, 1.38, and 1.91.  The resulting plot of the respective pairs (the Normal Probability Plot) has some 
curvature to it, but not enough to invalidate the normality assumption. (A formal test of normality has an 
approximate P-value of .2.) Minitab’s version of the residual plot appears below. 
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CHAPTER 11 
 

Section 11.1 
 
1.  

a. The test statistic is MSA SSA / ( 1) 442.0 / (4 1)
MSE SSE / ( 1)( 1) 123.4 / (4 1)(3 1)A

If
I J

− −
= = =

− − − −
 = 7.16. Compare this to the 

F distribution with df = (4 –1, (4 – 1)(3 – 1)) = (3, 6): 4.76 < 7.16 < 9.78 ⇒ .01 < P-value < .05. In 
particular, we reject H0A at the .05 level and conclude that at least one of the factor A means is 
different (equivalently, at least one of the αi’s is not zero). 

 

b. Similarly, SSB / ( 1) 428.6 / (3 1)
SSE / ( 1)( 1) 123.4 / (4 1)(3 1)B

Jf
I J

− −
= =

− − − −
= 10.42. At df = (2, 6), 5.14 < 10.42 < 10.92 

⇒ .01 < P-value < .05. In particular, we reject H0B at the .05 level and conclude that at least one of the 
factor B means is different (equivalently, at least one of the βj’s is not zero). 

 
2.  

a. x1. = 163, x2. = 152, x3. = 142, x4. = 146, x.1 = 215, x.2 = 188, x.3 = 200, x.. = 603, 2
ijxΣΣ = 30599,  

CF = (603)2/12 = 30300.75 ⇒ SST = 298.25, SSA = [1632 + 1522 + 1422 + 1462]/3 – 30300.75 = 
83.58, SSB = 30392.25 – 30300.75 = 91.50, SSE = 298.25 – 83.58 – 91.50 = 123.17.  

 
Source df SS MS F 

A 3 83.58 27.86 1.36 
B 2 91.50 45.75 2.23 

Error 6 123.17 20.53  
Total 11 298.25   

 
Since 1.35 < F.05,3,6 = 4.76, the P-value for the factor A test is > .05. Since 2.23 < F.02,3,6 = 5.14, the P-
value for the factor B test is also > .05.Therefore, neither H0A nor H0B  is rejected. 

 
b. ..ˆ 50.25xµ = = , 1 1. ..ˆ 4.08x xα = − = , 2ˆ .42α = , 3ˆ 2.92α = − , 4ˆ 1.58α = − , 1 .1 ..

ˆ 3.50x xβ = − = , 

2
ˆ 3.25β = − , 3

ˆ .25β = − . 
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3.   
a. The entries of this ANOVA table were produced with software. 

Source df SS MS F 
Medium 1 0.053220 0.0532195 18.77 
Current 3 0.179441 0.0598135 21.10 
Error 3 0.008505 0.0028350  
Total 7 0.241165   

To test H0A: α1 = α2 = 0 (no liquid medium effect), the test statistic is fA = 18.77; at df = (1, 3), the P-
value is .023 from software (or between .01 and .05 from Table A.9).  Hence, we reject H0A and 
conclude that medium (oil or water) affects mean material removal rate. 
 
To test H0B:  β1 = β2 = β3 = β4 = 0 (no current effect), the test statistic is fB = 21.10; at df = (3, 3), the P-
value is .016 from software (or between .01 and .05 from Table A.9).  Hence, we reject H0B and 
conclude that working current affects mean material removal rate as well. 

 
b. Using a .05 significance level, with J = 4 and error df = 3 we require Q.05,4,3 = 6.825. Then, the metric 

for significant differences is w = 0.002856.825 30 / 2 = 0.257. The means happen to increase with 
current; sample means and the underscore scheme appear below. 
 

Current: 10 15 20 25 
. jx  : 0.201 0.324 0.462 0.602 

     
     

 
 

4.  
a. The entries of this ANOVA table were produced with software. 

Source df SS MS F 
Paint Brand 3 159.58 53.19 7.85 
Roller Brand 2   38.00 19.00 2.80 

Error 6   40.67   6.78  
Total 11 238.25   

 
b. At df = (3, 6), .01 < P-value < .05. At the .05 level, we reject H0A: 1 2 3 4 0α α α α= = = = . The mean 

amount of coverage depends on the paint brand. 
 
c. At df = (2, 6), P-value > .1. At the .05 level, do not reject H0B: 1 2 3 0β β β= = = . The mean amount of 

coverage does not depend significantly on the roller brand. 
 
d. Because H0B was not rejected. Tukey’s method is used only to identify differences in levels of factor A 

(brands of paint). Q.05,4,6 = 4.90, from which w = 7.37. 
i: 4 3 2 1 

.ix : 41.3 41.7 45.7 50.3 
     

Brand 1 differs significantly from all other brands. 
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5.  

Source df SS MS F 
Angle 3   58.16 19.3867 2.5565 

Connector 4 246.97 61.7425 8.1419 
Error 12   91.00   7.5833  
Total 19 396.13   

 
We’re interested in 0 1 2 3 4: 0H α α α α= = = = versus Ha: at least one αi  ≠ 0. .01,3,122.5565 5.95Af F= < =  ⇒ 
P-value > .01, so we fail to reject H0.  The data fails to indicate any effect due to the angle of pull, at the .01 
significance level. 

 
 
6.  

a. 85.5
2

7.11
==MSA , 20.3

8
6.25
==MSE , 5.85 1.83

3.20Af = = , which is not significant at level .05. 

 
b. Otherwise extraneous variation associated with houses would tend to interfere with our ability to assess 

assessor effects.  If there really was a difference between assessors, house variation might have hidden 
such a difference.  Alternatively, an observed difference between assessors might have been due just to 
variation among houses and the manner in which assessors were allocated to homes. 

 
7.  

a. The entries of this ANOVA table were produced with software. 
Source df SS MS F 
Brand 2 22.8889 11.4444   8.96 

Operator 2 27.5556 13.7778 10.78 
Error 4   5.1111   1.2778  
Total 8 55.5556   

 
The calculated test statistic for the F-test on brand is fA = 8.96. At df = (2, 4), the P-value is .033 from 
software (or between .01 and .05 from Table A.9). Hence, we reject H0 at the .05 level and conclude 
that lathe brand has a statistically significant effect on the percent of acceptable product. 

 
b. The block-effect test statistic is f = 10.78, which is quite large (a P-value of .024 at df = (2, 4)). So, 

yes, including this operator blocking variable was a good idea, because there is significant variation 
due to different operators. If we had not controlled for such variation, it might have affected the 
analysis and conclusions. 

 
8.  

a. Software gives the output below. In particular, against the null hypothesis H0A: μcold = μneutral = μhot,      
fA = 1.03370/0.11787 = 8.77 with associated P-value = .003 at df = (2, 16). Hence, we reject H0A at the 
1% significance level and conclude, after blocking by subject, that temperature does affect true average 
body mass loss. 
 
Two–way ANOVA: BMLoss versus Temp, Subject  
 
Source   DF       SS       MS     F      P 
Temp      2  2.06741  1.03370  8.77  0.003 
Subject   8  2.98519  0.37315  3.17  0.024 
Error    16  1.88593  0.11787 
Total    26  6.93852 
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b. Q.05,3,16 = 3.65, so w = 3.65 9/11787.0 = .418. ⋅1x = .767, ⋅2x = 1.111, and ⋅3x = 1.444. So the only 
significant difference is between average body mass loss at 6°C and at 30°C. 

 
c. A normal probability plot of the residuals shows that, with the exception of one large residual, 

normality is plausible. A residual versus fit plot substantiates the assumption of constant variance. 
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9. The entries of this ANOVA table were produced with software. 
Source df SS MS F 

Treatment   3   81.1944 27.0648 22.36 
Block   8   66.5000   8.3125   6.87 
Error 24   29.0556   1.2106  
Total 35 176.7500   

At df = (3, 24), f = 22.36 > 7.55 ⇒ P-value < .001. Therefore, we strongly reject H0A and conclude that 
there is an effect due to treatments. We follow up with Tukey’s procedure: 
Q.05,4,24 = 3.90; w = 1.213.90 06 / 9  = 1.43 

1 4 3 2 
8.56 9.22 10.78 12.44 

 
 
10. The entries of this ANOVA table were produced with software. 

Source df SS MS F 
Method   2   23.23 11.61 8.69 
Batch   9   86.79   9.64 7.22 
Error 18   24.04   1.34  
Total 29 134.07   

 
.01,2,18 .001,2,186.01 8.69 10.33F F= < < = ⇒ .001 < P-value < .01. We reject H0A and conclude that at least two 

of the curing methods produce differing average compressive strengths. (Note: With P-value < .001, there 
are differences between batches as well — that is, blocking by batch effective reduced variation.)    

.05,3,18 3.61Q = ; 1.3 34 /10.61w =  = 1.32 

Method A Method B Method C 
29.49 31.31 31.40 

 
Methods B and C produce strengths that are not significantly different, but Method A produces strengths 
that are different (less) than those of both B and C. 
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11. The residual, percentile pairs are (–0.1225, –1.73), (–0.0992, –1.15), (–0.0825,   –0.81), (–0.0758, –0.55), 
(–0.0750, –0.32), (0.0117, –0.10), (0.0283, 0.10), (0.0350, 0.32), (0.0642, 0.55), (0.0708, 0.81),       
(0.0875, 1.15), (0.1575, 1.73). 

210-1-2
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The pattern is sufficiently linear, so normality is plausible. 

 
 

12. 113.5 28.38
4

MSB = =  and 25.6 3.20
8

MSE = =  ⇒ fB = 8.87. At df = (4, 8), 8.87 > 7.01 ⇒ P-value < .01. 

Thus, we reject H0B and conclude that 2 0Bσ > . 
 
 

13.  
a. With ij ijY X d= + , . .i iY X d= +  and . .j jY X d= +  and .. ..Y X d= + , so all quantities inside the 

parentheses in (11.5) remain unchanged when the Y quantities are substituted for the corresponding X’s 
(e.g., . .. . ..i iY Y X X− = − , etc.). 

 
b. With ij ijY cX= , each sum of squares for Y is the corresponding SS for X multiplied by c2.  However, 

when F ratios are formed the c2 factors cancel, so all F ratios computed from Y are identical to those 
computed from X.  If ij ijY cX d= + , the conclusions reached from using the Y’s will be identical to 
those reached using the X’s. 

 
 
14.  

( ) ( ) ( ) ( ) ( )
( ) ( )

. .. . ..
1 1

1 1

1 1 1

i i ij ijj i j

i j i jj i j

i j i j ij i j

E X X E X E X E X E X
J IJ

J IJ

J I J

µ α β µ α β

µ α β µ α β α

− = − = Σ − ΣΣ

= Σ + + − ΣΣ + +

= + + Σ − − Σ − Σ =

 

as desired. 
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15.  

a. 2 24,iαΣ =  so 2 3 24 1.125
4 16

φ   = =  
  

, 1.06φ = , ν1 = 3, ν2 = 6, and from Figure 10.5, power 2.≈ .  

For the second alternative, 1.59φ = , and power 43.≈ . 
 

b. 
2

2
2

4 20 1.00
5 16

jI
J

β
φ

σ
    = = =    
    

∑ , so 1.00φ = , ν1 = 4, ν2 = 12, and power 3.≈ . 

 

 

Section 11.2 
 
16.  

a.  
Source df SS MS F 

A   2   30,763.0 15,381.50 3.79 
B   3   34,185.6 11,395.20 2.81 

AB   6   43,581.2   7263.53 1.79 
Error 24   97,436.8   4059.87  
Total 35 205,966.6   

 
b. The test statistic is fAB = 1.79. 1.79 < F.05,6,24 = 2.51 ⇒ P-value > .05, so H0AB cannot be rejected, and 

we conclude that no statistically significant interaction is present. 
 
c. The test statistic is fA = 3.79. 3.79 > F.05,2,24 = 3.40 ⇒ P-value < .05, so H0A is rejected at level .05. 

There is a statistically significant factor A main effect. 
 
d. The test statistic is fB = 2.81. 2.81 < F.05,3,24 = 3.01 ⇒ P-value > .05, so H0B  is not rejected. There is not 

a statistically significant factor B main effect. 
 
e. .05,3,24 3.53Q = , 3.53 4059.87 /12 64.93w = = . 

3 1 2 
3960.02 4010.88 4029.10 

   
 
Only times 2 and 3 yield significantly different strengths. 
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17.  
a.  

Source df SS MS F P-value 
Sand 2    705 352.5 3.76 .065 
Fiber 2 1,278 639.0 6.82 .016 

Sand ×  Fiber 4    279     69.75 0.74 .585 
Error 9    843     93.67   
Total 17 3,105    

 
P-values were obtained from software; approximations can also be acquired using Table A.9.  There 
appears to be an effect due to carbon fiber addition, but not due to any other effect (interaction effect or 
sand addition main effect). 

 
b.  

Source df SS MS F P-value 

Sand 2 106.78 53.39 6.54 .018 
Fiber 2 87.11 43.56 5.33 .030 

Sand × Fiber 4 8.89 2.22 0.27 .889 
Error 9 73.50 8.17   
Total 17 276.28    

There appears to be an effect due to both sand and carbon fiber addition to casting hardness, but no 
interaction effect. 

 
c.  

Sand% 0 15 30 0 15 30 0 15 30 
Fiber% 0 0 0 0.25 0.25 0.25 0.5 0.5 0.5 
x  62 68 69.5 69 71.5 73 68 71.5 74 

 
The plot below indicates some effect due to sand and fiber addition with no significant interaction.  
This agrees with the statistical analysis in part b. 
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18.  
Source df SS MS F 

Formulation 1 2,253.44 2,253.44 376.20 
Speed 2    230.81    115.41   19.27 

Formulation × Speed 2      18.58        9.29     1.55 
Error 12      71.87        5.99  
Total 17 2,574.70   

     
a. There appears to be no interaction between the two factors: fAB = 1.55, df = (2, 12), P-value = .25. 
 
b. Both formulation and speed appear to have a highly statistically significant effect on yield (the 

calculated F statistics are enormous). 
 
c. Let Factor A = formulation and Factor B = speed. Begin by estimating the μ’s: 

...ˆ x=µ = 175.84; ∑=
j

jx .
3
1.ˆ 11µ = 187.03 and .ˆ 2µ = 164.66; ∑=

i
ix .

2
1.ˆ 11µ  = 177.83, 2.µ̂ = 170.82, 

and 3.µ̂ = 178.88. 
Since µµα −= .ii , 1α̂ = 187.03 – 175.84 = 11.19 and 2α̂ = 164.66 – 175.84 = –11.18; these sum to 0 

except for rounding error. Similarly, µµβ ˆ.ˆˆ
11 −= = 177.83 – 175.84 = 1.99, 02.5ˆ

2 −=β , 

and 04.3ˆ
3 =β ; these sum to 0 except for rounding error. 

 
d. Using )( jiijij βαµµγ ++−=  and techniques similar to above, we find the following estimates of the 

interaction effects: 45.ˆ11 =γ , 41.1ˆ12 −=γ , 96.ˆ13 =γ , 45.ˆ21 −=γ , 39.1ˆ22 =γ , and 97.ˆ23 −=γ . 
Again, there are some minor rounding errors. 

 
Observed Fitted Residual Observed Fitted Residual 

189.7 189.47 0.23 161.7 161.03 0.67 
188.6 189.47 –0.87 159.8 161.03 –1.23 
190.1 189.47 0.63 161.6 161.03 0.57 
165.1 166.20 –1.1 189.0 191.03 –2.03 
165.9 166.20 –0.3 193.0 191.03 1.97 
167.6 166.20 1.4 191.1 191.03 0.07 
185.1 180.60 4.5 163.3 166.73 –3.43 
179.4 180.60 –1.2 166.6 166.73 –0.13 
177.3 180.60 –3.3 170.3 166.73 3.57 

 
e. The residual plot is reasonably linear, suggesting the true errors could be assumed normal. 
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19.  
Source df SS MS F 

Farm Type   2 35.75 17.875 0.94 
Tractor Maint. Method   5    861.20    172.240   9.07 

Type × Method 10      603.51        60.351     3.18 
Error 18      341.82        18.990  
Total 35 1842.28   

 
For the interaction effect, fAB = 3.18 at df = (10, 18) gives P-value = .016 from software.  Hence, we do not 
reject H0AB at the .01 level (although just barely). This allows us to proceed to the main effects. 
 
For the factor A main effect, fA = 0.94 at df = (2, 18) gives P-value = .41 from software. Hence, we clearly 
fail to reject H0A at the .01 level — there is not statistically significant effect due to type of farm. 
 
Finally, fB = 9.07 at df = (5, 18) gives P-value < .0002 from software. Hence, we strongly reject H0B at the 
.01 level — there is a statistically significant effect due to tractor maintenance method. 

 
20.  

a. The accompanying comparative box plot indicates that bond strength is typical greater with SBP 
adhesive than with OBP adhesive, but that the “condition” of the adhesive (dry or moist) doesn’t have 
much of an impact.  
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b. Minitab provides the accompanying two-way ANOVA table. At the .01 level, there is not a statistically 
significant interaction between adhesive and condition’s effects on shear bond strength (although it’s 
worth noting that the P-value of .031 is not large). Ignoring the interaction effect, condition (dry/moist) 
is clearly not statistically significant, while adhesive (OBP/SBP) is highly statistically significant.  

 
Two-way ANOVA: Bond strength versus Adhesive, Condition  
 
Source       DF       SS       MS      F      P 
Adhesive      1   951.41  951.410  22.85  0.000 
Condition     1    48.20   48.200   1.16  0.288 
Interaction   1   207.92  207.917   4.99  0.031 
Error        44  1832.32   41.644 
Total        47  3039.85 
 
An interaction plot reinforces that SBP adhesive is superior to OBP adhesive. The slopes of the two 
line segments aren’t very steep, suggesting a negligible “condition effect”; however, the fact that the 
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slopes have opposite signs (and, in particular, are clearly different) speaks to the interaction effect: 
OBP works better moist, while SBP works better dry.  
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c. Minitab performs a one-way ANOVA as summarized below. Consistent with the two-way ANOVA, 
we reject the hypothesis that “type” (i.e., adhesive-condition pairing) has no effect on bond strength. 
Using Tukey’s procedure results in the underscoring scheme seen below. The OBP-D setting is 
statistically significantly different at the .05 level from either of the SBP settings, but no other 
differences are statistically significant. 

 
One-way ANOVA: Bond strength versus Type  
 
Source  DF      SS     MS     F      P 
Type     3  1207.5  402.5  9.67  0.000 
Error   44  1832.3   41.6 
Total   47  3039.8 

 
OBP-D OBP-M SBP-M SBP-D 

39.9 46.1 50.8 53.0 
    

 
 
 
21. From the provided SS, [ ] 87.399350.253,1553.765,2280.941,2270.954,64 =++−=SSAB .  This allows us 

to complete the ANOVA table below. 
 

Source df SS MS F 
A 2 22,941.80 11,470.90 22.98 
B 4 22,765.53 5691.38 11.40 

AB 8 3993.87 499.23 .49 
Error 15 15,253.50 1016.90  
Total 29 64,954.70   

 
fAB = .49 is clearly not significant. Since 46.498.22 8,2,05. =≥ F , the P-value for factor A is < .05 and H0A is 
rejected. Since 84.340.11 8,4,05. =≥ F , the P-value for factor B is < .05 and H0B is also rejected.  We 
conclude that the different cement factors affect flexural strength differently and that batch variability 
contributes to variation in flexural strength. 
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22. This is a mixed effects model. In particular, the relevant null hypotheses are 0: 43210 ==== ααααAH ; 

0: 2
0 =BBH σ ; 0: 2

0 =GABH σ . Software gives the ANOVA table below. Interaction between brand and 
writing surface has no significant effect on the lifetime of the pen (P-value = .150). Since neither of the 
main effect P-values are significant (.798 and .400), we can conclude that neither the surface nor the brand 
of pen has a significant effect on the writing lifetime. 

 
 
 

 
 
 
 
 

 
 
 

23. Summary quantities include 1.. 9410x = , 2.. 8835x = , 3.. 9234x = , .1. 5432x = , .2. 5684x = , .3. 5619x = , 

.4. 5567x = , .5. 5177x = , ... 27,479x = , 16,779,898.69CF = , 2
.. 251,872,081ixΣ = , 2

. . 151,180,459jxΣ = , 
resulting in the accompanying ANOVA table. 

Source df SS MS F 

A 2 11,573.38 5786.69 26.70MSA
MSAB =  

B 4 17,930.09 4482.52 20.68MSB
MSAB =  

AB 8 1734.17 216.77 1.38MSAB
MSE =  

Error 30 4716.67 157.22  

Total 44 35,954.31   
Since 17.338.1 30,8,01. =< F , the interaction P-value is > .01 and H0G cannot be rejected. We continue: 

65.870.26 8,2,01. =≥ F  ⇒ factor A P-value < .01 and 01.768.20 8,4,01. =≥ F  ⇒ factor B P-value < .01, so 
both H0A and H0B are rejected.  Both capping material and the different batches affect compressive strength 
of concrete cylinders. 
 
 

24.  
a.  

( ) ( ) ( )

( ) ( )

.. ...
1 1

1 1

i ijk ijkj k i j k

i j ij i j ijj k i j k

i i

E X X E X E X
JK IJK

JK IJK
µ α β γ µ α β γ

µ α µ α

− = ΣΣ − ΣΣΣ

= ΣΣ + + + − ΣΣΣ + + +

= + − =

  

 
b.  

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1 1
îj ijk ijk ijk ijkk j k i k i j k

i j ij i j ij

E E X E X E X E X
K JK IK IJK

γ

µ α β γ µ α µ β µ γ

= Σ − ΣΣ − ΣΣ + ΣΣΣ

= + + + − + − + + =
  

 
 

Source df SS MS F P-value 

A 3 1387.50 462.05 34.=MSAB
MSA  .798 

B 2 2888.08 1444.04 07.1=MSAB
MSB  .400 

AB 6 8100.25 ,350.04 97.1=MSE
MSAB  .150 

Error 12 8216.00 684.67   

Total 23 20591.83    
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25. With ii ααθ ′−= , ( )jkiijkkjii XX
JK

XX ′′ −ΣΣ=−=
1ˆ

....θ , and since ii ′≠ , jkiijk XX ′ and  are independent 

for every j, k.  Thus, ( ) ( ) ( )
2 2 2

.. ..
2ˆ

i iV V X V X
JK JK JK
σ σ σθ ′= + = + =  (because ( ) ( ).. ..i iV X V ε=  and  

( ) 2
ijkV ε σ= ) so 

JK
MSE2ˆ ˆ =θσ .  The appropriate number of df is IJ(K – 1), so the CI is 

( )
JK
MSEtxx KIJii

2
)1(,2/.... −′ ±− α .  For the data of exercise 19, ..2x = 8.192, ..3x = 8.395, MSE = .0170, 

262.29,025. =t , J = 3, K = 2, so the 95% C.I. for α2 – α3 is (8.182 – 8.395) ± 2.262
6

0340. = –0.203 ± 0.170 

= (–0.373, –0.033). 
 
 
26.  

a. ( )
( ) 11 2

2
=+=

σ
σGK

MSEE
MSABE  if 02 =Gσ  and > 1 if  02 >Gσ , so 

MSE
MSAB  is the appropriate F ratio. 

 

b. ( )
( ) 11 22

2

22

222
=

+
+=

+

++
=

G

A

G

AG

K
JK

K
JKK

MSABE
MSAE

σσ
σ

σσ
σσσ  if 02 =Aσ  and > 1 if 02 >Aσ , so 

MSAB
MSA  is the 

appropriate F ratio for H0A versus HaA. Similarly, MSB/MSAB is the appropriate F ratio for H0B versus 
HaB.  
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Section 11.3 
 
27.  

a. The last column will be used in part b. 
Source df SS MS F F.05,num df, den df 

A 2 14,144.44 7072.22 61.06 3.35 
B 2 5,511.27 2755.64 23.79 3.35 
C 2 244,696.39 122.348.20 1056.24 3.35 

AB 4 1,069.62 267.41 2.31 2.73 
AC 4 62.67 15.67 .14 2.73 
BC 4 331.67 82.92 .72 2.73 

ABC 8 1,080.77 135.10 1.17 2.31 
Error 27 3,127.50 115.83   
Total 53 270,024.33    

 
b. The computed F-statistics for all four interaction terms (2.31, .14, .72, 1.17) are less than the tabled 

values for statistical significance at the level .05 (2.73 for AB/AC/BC, 2.31 for ABC). Hence, all four 
P-values exceed .05. This indicates that none of the interactions are statistically significant. 

 
c. The computed F-statistics for all three main effects (61.06, 23.79, 1056.24) exceed the tabled value for 

significance at level .05 (3.35 = F.05,2,27).  Hence, all three P-values are less than .05 (in fact, all three 
P-values are less than .001), which indicates that all three main effects are statistically significant. 

 

d. Since 27,3,05.Q  is not tabled, use 53.324,3,05. =Q , ( )( )( ) 95.8
233

83.11553.3 ==w .  All three levels differ 

significantly from each other. 
 
 
28.  

Source df SS MS F F.01, num df, den df 
A 3 19,149.73 6,383.24 2.70 4.72 
B 2 2,589,047.62 1,294,523.81 546.79 5.61 
C 1 157,437.52 157,437.52 66.50 7.82 

AB 6 53,238.21 8,873.04 3.75 3.67 
AC 3 9,033.73 3,011.24 1.27 4.72 
BC 2 91,880.04 45,940.02 19.40 5.61 

ABC 6 6,558.46 1,093.08 .46 3.67 
Error 24 56,819.50 2,367.48   
Total 47 2,983,164.81    

 
For each effect, if the calculated F statistic is more than the .01 critical value (far right column), then the P-
value is less than .01 and, thus, the effect is deemed significant.   

The statistically significant interactions are AB and BC.  Factor A appears to be the least significant of all 
the factors. It does not have a significant main effect and the significant interaction (AB) is only slightly 
greater than the tabled value at significance level .01 (hence, P-value barely below .01). 
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29.  
a.  

Source df SS MS F P-value 
A 2 1043.27 521.64 110.69 <.001 
B 1 112148.10 112148.10 23798.01 <.001 
C 2 3020.97 1510.49 320.53 <.001 

AB 2 373.52 186.76 39.63 <.001 
AC 4 392.71 98.18 20.83 <.001 
BC 2 145.95 72.98 15.49 <.001 

ABC 4 54.13 13.53 2.87 .029 
Error 72 339.30 4.71   
Total 89 117517.95    

  
P-values were obtained using software. At the .01 significance level, all main and two-way interaction 
effects are statistically significant (in fact, extremely so), but the three-way interaction is not 
statistically significant (.029 > .01). 

 
b. The means provided allow us to construct an AB interaction plot and an AC interaction plot. Based on 

the first plot, it’s actually surprising that the AB interaction effect is significant: the “bends” of the two 
paths (B = 1, B = 2) are different but not that different. The AC interaction effect is more clear: the 
effect of C = 1 on mean response decreases with A (= 1, 2, 3), while the pattern for C = 2 and C = 3 is 
very different (a sharp up-down-up trend). 
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30.  
a. See ANOVA table below. Notice that with no replication, there is no error term from which to estimate 

the error variance. In part b, the three-way interaction term will be absorbed into the error (i.e., become 
the error “effect”); the F-statistics in the table reflect that denominator. 
 

b.  
Source df SS MS F 

A 3 .226250 .0754170 77.35 
B 1 .000025 .0000250 .03 
C 1 .003600 .0036000 3.69 

AB 3 .004325 .0014417 1.48 
AC 3 .000650 .0002170 .22 
BC 1 .000625 .0006250 .64 

ABC 3 .002925 .0009750  
Error –– –– ––  
Total 15 .238400   

 
The only statistically significant effect at the level .05 is the factor A main effect: levels of nitrogen    
(fA = 77.35, P-value < .001). The next most significant effect is factor C main effect, but fC = 3.69 at   
df = (1, 3) yields a P-value of about .15. 

 

c. 82.63,4,05. =Q  ; ( )( ) 1844.
22

002925.82.6 ==w . 

1 2 3 4 
1.1200 1.3025 1.3875 1.4300 

    
 
31.  

a. The following ANOVA table was created with software. 
Source df SS MS F P-value 

A 2 124.60 62.30 4.85 .042 
B 2 20.61 10.30 0.80 .481 
C 2 356.95 178.47 13.89 .002 

AB 4 57.49 14.37 1.12 .412 
AC 4 61.39 15.35 1.19 .383 
BC 4 11.06 2.76 0.22 .923 

Error 8 102.78 12.85   
Total 26 734.87    

 
b. The P-values for the AB, AC, and BC interaction effects are provided in the table. All of them are much 

greater than .1, so none of the interaction terms are statistically significant. 
 

c. According to the P-values, the factor A and C main effects are statistically significant at the .05 level. 
The factor B main effect is not statistically significant. 
 

d. The paste thickness (factor C) means are 38.356, 35.183, and 29.560 for thickness .2, .3, and .4, 
respectively. Applying Tukey’s method, Q.05,3,8 = 4.04 ⇒ w = 4.04 12.85 / 9 = 4.83.   

 
Thickness:      .4      .3      .2 
Mean:  29.560  35.183  38.356 
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32.  

a. Since ( )
( ) 12

22
=

+
=

σ
σσ ABCL

MSEE
MSABCE  if 02 =ABCσ  and > 1 if  02 >ABCσ , 

MSE
MSABC  is the appropriate 

F ratio for testing 0: 2
0 =ABCH σ .  Similarly, 

MSE
MSC  is the F ratio for testing 0: 2

0 =CH σ ; 
MSABC
MSAB  is 

the F ratio for testing :0H  all 0=AB
ijγ ; and 

MSAC
MSA  is the F ratio for testing :0H  all 0=iα . 

 
b.  

Source df SS MS              F F.01, num df, den df 

A 1 14,318.24 14,318.24 85.19=MSAC
MSA  98.50 

B 3 9656.4 3218.80 24.6=MSBC
MSB  9.78 

C 2 2270.22 1135.11 15.3=MSE
MSC  5.61 

AB 3 3408.93 1136.31 41.2=MSABC
MSAB  9.78 

AC 2 1442.58 721.29 53.1=MSABC
MSAC  5.61 

BC 6 3096.21 516.04 43.1=MSE
MSBC  3.67 

ABC 6 2832.72 472.12 31.1=MSE
MSABC  3.67 

Error 24 8655.60 360.65   

Total 47     
 

To have a P-value less than .01, the calculated F statistic must be greater than the value in the far-right 
column. At level .01, no H0’s can be rejected, so there appear to be no interaction or main effects 
present. 

 
 
33. The various sums of squares yield the accompanying ANOVA table. 

Source df SS MS F 

 

A 6 67.32 11.02  
B 6 51.06 8.51  
C 6 5.43 .91 .61 

Error 30 44.26 1.48  
Total 48 168.07   

 
We’re interested in factor C. At df = (6, 30), .61 < 42.230,6,05. =F ⇒ P-value > .05. Thus, we fail to reject 
H0C and conclude that heat treatment had no effect on aging. 
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34. Rewrite the data to get sums within levels: 
 1 2 3 4 5 6 

..ix  144 205 272 293 85 98 

.. jx  171 199 147 221 177 182 

kx..  180 161 186 171 169 230 
 

Thus x... = 1097, CF = 10972/36 = 33428.03, 2
( ) 42,219ij kxΣΣ = , 2

.. 239,423ixΣ = , 2
. . 203,745jxΣ = , 

2
.. 203.619kxΣ = . From these, we can construct the ANOVA table. 

 
Source df SS MS F 

A 5 6475.80 1295.16  
B 5 529.47 105.89  
C 5 508.47 101.69 1.59 

Error 20 1277.23 63.89  
Total 35 8790.97   

 
Since 1.59 < F.01,5,20 = 4.10, the P-value for the factor C effect is > .01. Hence, H0C is not rejected; shelf 
space does not appear to affect sales at the .01 level (even adjusting for variation in store and week). 

 
 
35.  

 1 2 3 4 5  

..ix  40.68 30.04 44.02 32.14 33.21 91.66302
.. =Σ ix  

.. jx  29.19 31.61 37.31 40.16 41.82 02.66052
.. =Σ jx  

kx..  36.59 36.67 36.03 34.50 36.30 92.64892
.. =Σ kx  

09.180... =x , CF = 1297.30, 60.13582
)( =ΣΣ kijx  

Source df SS MS F 
A 4 28.89 7.22 10.71 
B 4 23.71 5.93 8.79 
C 4 0.63 0.16 0.23 

Error 12 8.09 0.67  
Total 24 61.30   

F.05,4,12 = 3.26, so the P-values for factor A and B effects are < .05 (10.71 > 3.26, 8.79 > 3.26), but the P-
value for the factor C effect is > .05 (0.23 < 3.26). Both factor A (plant) and B(leaf size) appear to affect 
moisture content, but factor C (time of weighing) does not. 
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36.  

Source df SS MS F F.01,num df, den df* 
A (laundry treatment) 3 39.171 13.057 16.23 3.95 

B (pen type) 2 .665 .3325 .41 4.79 
C (fabric type) 5 21.508 4.3016 5.35 3.17 

AB 6 1.432 .2387 .30 2.96 
AC 15 15.953 1.0635 1.32 2.19 
BC 10 1.382 .1382 .17 2.47 

ABC 30 9.016 .3005 .37 1.86 
Error 144 115.820 .8043   
Total 215 204.947    

 *Because denominator df = 144 is not tabled, we have used 120. 
To be significant at the .01 level (P-value < .01), the calculated F statistic must be greater than the .01 
critical value in the far right column.  At the level .01, there are two statistically significant main effects: 
laundry treatment and fabric type.  There are no statistically significant interactions. 

 
 
37. SST = (71)(93.621) = 6,647.091.  Computing all other sums of squares and adding them up = 6,645.702.  

Thus SSABCD = 6,647.091 – 6,645.702 = 1.389 and MSABCD = 1.389/4 = .347. 
 

Source df MS F F.01,num df, den df* 
A 2 2207.329 2259.29 5.39 
B 1 47.255 48.37 7.56 
C 2 491.783 503.36 5.39 
D 1 .044 .05 7.56 

AB 2 15.303 15.66 5.39 
AC 4 275.446 281.93 4.02 
AD 2 .470 .48 5.39 
BC 2 2.141 2.19 5.39 
BD 1 .273 .28 7.56 
CD 2 .247 .25 5.39 

ABC 4 3.714 3.80 4.02 
ABD 2 4.072 4.17 5.39 
ACD 4 .767 .79 4.02 
BCD 2 .280 .29 5.39 

ABCD 4 .347 .355 4.02 
Error 36 .977   
Total 71    

 *Because denominator df for 36 is not tabled, use df = 30.  
 
To be significant at the .01 level (P-value < .01), the calculated F statistic must be greater than the .01 
critical value in the far right column.  At level .01 the statistically significant main effects are  A, B, C.  The 
interaction AB and AC are also statistically significant.  No other interactions are statistically significant. 
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Section 11.4 
 
38.  

a. Apply Yates’ method: 

Condition xijk. 1 2 Effect 
Contrast 

( )
16

2contrastSS =  

(1) = x111.  404.2 839.2 1991.0 3697.0  

a = x211.  435.0 1151.8 1706.0 164.2 1685.1 

b = x121.  549.6 717.6 83.4 583.4 21,272.2 

ab = x221.  602.2 988.4 80.8 24.2 36.6 

c = x112.  339.2 30.8 312.6 –285.0 5076.6 

ac = x212.  378.4 52.6 270.8 –2.6 .4 

bc = x122.  473.4 39.2 21.8 –41.8 109.2 

abc = x222.  515.0 41.6 2.4 –19.4 23.5 

That verifies all the treatment SS. From the original data, 2 882,573.38ijklxΣΣΣΣ =  and x…. = 3697, so 
SST = 882,573.38 – 36972/16 = 28,335.3. This verifies the last SS.  

b. The important effects are those with small associated P-values, indicating statistical significance.  
Those effects significant at level .05 (i.e., P-value < .05) are the three main effects and the speed by 
distance interaction. 

 

39. Start by applying Yates’ method. Each sum of squares is given by SS = (effect contrast)2/24. 

Condition 
Total 

xijk 1 2 
Effect 

Contrast SS 
(1) 315 927 2478 5485  
a 612 1551 3007 1307 SSA = 71,177.04 
b 584 1163 680 1305 SSB = 70,959.38 
ab 967 1844 627 199 SSAB = 1650.04 
c 453 297 624 529 SSC = 11,660.04 

ac 710 383 681 –53 SSAC = 117.04 
bc 737 257 86 57 SSBC = 135.38 

abc 1107 370 113 27 SSABC = 30.38 
 

a. Totals appear above. From these, 

1 .2.. ....
584 967 737 1107 315 612 453 710ˆ 54.38

24
x xβ + + + − − − −

= − = = ;

11
315 612 584 967 453 710 737 1107ˆ 2.21

24
ACγ − + − − + − +

= = ; 21 11ˆ ˆ 2.21AC ACγ γ= − = . 
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b. Factor sums of squares appear in the preceding table. From the original data, ∑∑∑∑ 2

ijklx = 1,411,889 
and x…. = 5485, so SST = 1,411,889 – 54852/24 = 158,337.96, from which SSE = 2608.7 (the 
remainder).   

 
Source df SS MS F P-value 

A 1  71,177.04  71,177.04 435.65 <.001 
B 1 70,959.38 70,959.38 435.22 <.001 

AB 1 1650.04 1650.04 10.12 .006 
C 1 11,660.04 11,660.04 71.52 <.001 

AC 1 117.04 117.04 0.72 .409 
BC 1 135.38 135.38 0.83 .376 

ABC 1 30.38 30.38 0.19 .672 
Error 16 2608.7 163.04   
Total 23 158,337.96    

 
P-values were obtained from software. Alternatively, a P-value less than .05 requires an F statistic 
greater than F.05,1,16 = 4.49. We see that the AB interaction and all the main effects are significant. 

 
c. Yates’ algorithm generates the 15 effect SS’s in the ANOVA table; each SS is (effect contrast)2/48. 

From the original data, ∑∑∑∑∑ 2
ijklmx = 3,308,143 and x….. = 11,956 ⇒ SST = 3,308,143 – 11,9562/48 

328,607.98.  SSE is the remainder: SSE = SST – [sum of effect SS’s] = … = 4,339.33.   
 

Source df SS MS F 
A 1 136,640.02 136,640.02 1007.6 
B 1 139,644.19 139,644.19 1029.8 
C 1 24,616.02 24,616.02 181.5 
D 1 20,377.52 20,377.52 150.3 

AB 1 2,173.52 2,173.52 16.0 
AC 1 2.52 2.52 0.0 
AD 1 58.52 58.52 0.4 
BC 1 165.02 165.02 1.2 
BD 1 9.19 9.19 0.1 
CD 1 17.52 17.52 0.1 

ABC 1 42.19 42.19 0.3 
ABD 1 117.19 117.19 0.9 
ACD 1 188.02 188.02 1.4 
BCD 1 13.02 13.02 0.1 

ABCD 1 204.19 204.19 1.5 
Error 32 4,339.33 135.60  
Total 47 328,607.98   

 
In this case, a P-value less than .05 requires an F statistic greater than F.05,1,32 ≈ 4.15. Thus, all four 
main effects and the AB interaction effect are statistically significant at the .05 level (and no other 
effects are). 
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40.  
a. In the accompanying ANOVA table, effects are listed in the order implied by Yates’ algorithm. 

16.47832 =ΣΣΣΣΣ ijklmx , 14.388..... =x , so 56.72
32

14.38816.4783
2
=−=SST  and SSE = 72.56 – (sum 

of all other SS’s) = 35.85. 
Source df SS MS F  

A 1 .17 .17 < 1  
B 1 1.94 1.94 < 1  

AB 1 3.42 3.42 1.53  
C 1 8.16 8.16 3.64  

AC 1 .26 .26 < 1  
BC 1 .74 .74 < 1  

ABC 1 .02 .02 < 1  
D 1 13.08 13.08 5.84  

AD 1 .91 .91 < 1  
BD 1 .78 .78 < 1  

ABD 1 .78 .78 < 1  
CD 1 6.77 6.77 3.02  

ACD 1 .62 .62 < 1  
BCD 1 1.76 1.76 < 1  

ABCD 1 .00 .00 < 1  
Error 16 35.85 2.24   
Total 31 72.56    

 

b. To be significant at the .05 level (i.e., P-value < .05) requires the calculated F statistic to be greater 
than F.05,1,16 = 4.49. So, none of the interaction effects is judged significant, and only the D main effect 
is significant. 

 
 

41. The accompanying ANOVA table was created using software. All F statistics are quite large (some 
extremely so) and all P-values are very small. So, in fact, all seven effects are statistically significant for 
predicting quality.  

 
Source df SS MS F P-value 

A 1  .003906  .003906 25.00 .001 
B 1 .242556 .242556 1552.36 <.001 
C 1 .003906 .003906 25.00 .001 

AB 1 .178506 .178506 1142.44 <.001 
AC 1 .002256 .002256 14.44 .005 
BC 1 .178506 .178506 1142.44 <.001 

ABC 1 .002256 .002256 14.44 .005 
Error 8 .000156 .000156   
Total 15 .613144    
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42. Use Yates’ algorithm to find the contrasts, then find MS by ( )
48

2contrastSS =  and MS = SS/1. Then, 

817,917,322 =ΣΣΣΣΣ ijklmx and 371,39..... =x ⇒ SST = 624,574, whereby SSE = SST – [sum of all other SS] 
= 164528, and error df = 32. 

Effect MS F Effect MS F 

A 3120 < 1 AD 16170 3.15 
B 332168 64.61 BD 3519 < 1 

AB 14876 2.89 ABD 2120 < 1 
C 43140 8.39 CD 4701  < 1 

AC 776 < 1 ACD 1964 < 1 
BC 3554 < 1 BCD 10355 2.01 

ABC 1813 < 1 ABCD 1313 < 1 
D 20460 3.98 Error 5142  

 
5.732,1,01. ≈F , so to get a P-value < .01 requires an F statistic greater than 7.5. Only the B and C main 

effects are judged significant at the 1% level. 
 
 
43.  

Condition/ 
Effect 

( )
16

2contrastSS =  F Condition/
Effect 

( )
16

2contrastSS =  F 

(1) ––  D 414.123 850.77 

A .436 < 1 AD .017 < 1 

B .099 < 1 BD .456 < 1 

AB .003 < 1 ABD .990 –– 

C .109 < 1 CD 2.190 4.50 

AC .078 < 1 ACD 1.020 –– 

BC 1.404 3.62 BCD .133 –– 

ABC .286 –– ABCD .004 –– 
 

SSE = .286 + .990 + 1.020 + .133 + .004 =2.433, df = 5, so MSE = .487, which forms the denominators of the F 
values above. A P-value less than .05 requires an F statistic greater than 61.65,1,05. =F , so only the D main effect 
is significant. 
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44.  
a. The eight treatment conditions which have even number of letters in common with abcd and thus go in 

the first (principal) block are (1), ab, ac, bc, ad, bd, cd, abcd; the other eight conditions are placed in 
the second block. 

 
b. and c. 

1290.... =x , 160,1052 =ΣΣΣΣ ijklx , so SST = 1153.75.  The two block totals are 639 and 651, so 

00.9
16

1290
8

651
8

639 222
=−+=SSBl , which is identical (as it must be here) to SSABCD computed 

from Yates algorithm. 

Condition/Effect Block ( )
16

2contrastSS =  F 
(1) 1 ––  
A 2 25.00 1.93 
B 2 9.00 < 1 

AB 1 12.25 < 1 
C 2 49.00 3.79 

AC 1 2.25 < 1 
BC 1 .25 < 1 

ABC 2 9.00 –– 
D 2 930.25 71.90 

AD 1 36.00 2.78 
BD 1 25.00 1.93 

ABD 2 20.25 –– 
CD 1 4.00 < 1 

ACD 2 20.25 –– 
BCD 2 2.25 –– 

ABCD=Blocks 1 9.00 < 1 
Total  1153.75  

 

75.5125.225.2025.200.9 =+++=SSE , df = 4, so MSE = 12.9375, 71.74,1,05. =F , so only the D main 
effect is significant. 
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45.  
a. The allocation of treatments to blocks is as given in the answer section (see back of book), with block 

#1 containing all treatments having an even number of letters in common with both ab and cd, block 
#2 those having an odd number in common with ab and an even number with cd, etc. 

 

b. 054,035,92 =ΣΣΣΣ ijklmx and 898,16..... =x , so 875.853,111
32
898,16054,035,9

2
=−=SST .  The eight 

block-replication totals are 2091 ( = 618 + 421 + 603 + 449, the sum of the four observations in block 
#1 on replication #1), 2092, 2133, 2145, 2113, 2080, 2122, and 2122, so  

875.898
32
898,16

4
2122...

4
2091 222

=−++=SSBl .  The effect SS’s can be computed via Yates’ 

algorithm; those we keep appear below. SSE is computed by SST – [sum of all other SS]. MSE = 
5475.75/12 = 456.3125, which forms the denominator of the F ratios below. With 33.912,1,01. =F , only 
the A and B main effects are significant. 

Source df SS F 
A 1 12403.125 27.18 
B 1 92235.125 202.13 
C 1 3.125 0.01 
D 1 60.500 0.13 

AC 1 10.125 0.02 
BC 1 91.125 0.20 
AD 1 50.000 0.11 
BC 1 420.500 0.92 

ABC 1 3.125 0.01 
ABD 1 0.500 0.00 
ACD 1 200.000 0.44 
BCD 1 2.000 0.00 
Block 7 898.875 0.28 
Error 12 5475.750  
Total 31 111853.875  

 
 
46. The result is clearly true if either defining effect is represented by either a single letter (e.g., A) or a pair of 

letters (e.g. AB).  The only other possibilities are for both to be “triples” (e.g. ABC or ABD, all of which 
must have two letters in common.) or one a triple and the other ABCD.  But the generalized interaction of 
ABC and ABD is CD, so a two-factor interaction is confounded, and the generalized interaction of ABC 
and ABCD is D, so a main effect is confounded. Similar comments apply to any other triple(s). 

 
47.  

a. The third nonestimable effect is (ABCDE)(CDEFG) = ABFG. The treatments in the group containing (1) 
are (1), ab, cd, ce, de, fg, acf, adf, adg, aef, acg, aeg, bcg, bcf, bdf, bdg, bef, beg, abcd, abce, abde, abfg, 
cdfg, cefg, defg, acdef, acdeg, bcdef, bcdeg, abcdfg, abcefg, abdefg. The alias groups of the seven main 
effects are{A, BCDE, ACDEFG, BFG}, {B, ACDE, BCDEFG, AFG}, {C, ABDE, DEFG, ABCFG},       
{D, ABCE, CEFG, ABDFG}, {E, ABCD, CDFG, ABEFG}, {F, ABCDEF, CDEG, ABG}, and                 
{G, ABCDEG, CDEF, ABF}. 
 

b. 1: (1), aef, beg, abcd, abfg, cdfg, acdeg, bcdef; 2: ab, cd, fg, aeg, bef, acdef, bcdeg, abcdfg; 3: de, acg, adf, 
bcf, bdg, abce, cefg, abdefg; 4: ce, acf, adg, bcg, bdf, abde, defg, abcefg. 
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48.  

a. The treatment conditions in the observed group are, in standard order, (1), ab, ac, bc, ad, bd, cd, and 
abcd.  The alias pairs are {A, BCD}, {B, ACD}, {C, ABD}, {D, ABC},     {AB, CD}, {AC, BD}, and 
{AD, BC}. 

 
b. The accompanying sign chart allows us to compute the contrasts. 
 

 
 A B C D AB AC AD 

(1) = 8.936 – – – – + + + 

ab = 9.130 + + – – + – – 

ac = 4.314 + – + – – + – 

bc = 7.692 – + + – – – + 

ad = 0.415 + – – + – – + 

bd = 6.061 – + – + – + – 

cd = 1.984 – – + + + – – 

abcd = 3.830 + + + + + + + 

Contrast –6.984 11.064 –6.722 –17.782 5.398 3.92 –0.616 
SS 6.10 15.30 5.65 39.52 3.64 1.92 0.05 

F 3.26 8.18 3.02 21.14   

 

To test main effects, we use SSE = SSAB + SSAC + SSAD = 5.61, so MSE = 5.61/3 = 1.87. The test 
statistics above are calculated by f = [SSTr/1]/[SSE/3] = SSTr/MSE. A P-value less than .05 requires a 
test statistic greater than F.05,1,3 = 10.13, so only the D main effect is judged to be statistically 
significant.  

The accompanying normal probability plot is quite linear, with the point corresponding to the D main 
effect (contrast = –17.782) the only noteworthy value. 
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49.  
  A B C D E AB AC AD AE BC BD BE CD CE DE 
a 70.4 + – – – – – – – – + + + + + + 
b 72.1 – + – – – – + + + – – – + + + 
c 70.4 – – + – – + – + + – + + – – + 

abc 73.8 + + + – – + + – – + – – – – + 
d 67.4 – – – + – + + – + + – + – + – 

abd 67.0 + + – + – + – + – – + – – + – 
acd 66.6 + – + + – – + + – – – + + – – 
bcd 66.8 – + + + – – – – + + + – + – – 
e 68.0 – – – – + + + + – + + – + – – 

abe 67.8 + + – – + + – – + – – + + – – 
ace 67.5 + – + – + – + – + – + – – + – 
bce 70.3 – + + – + – – + – + – + – + – 
ade 64.0 + – – + + – – + + + – – – – + 
bde 67.9 – + – + + – + – – – + + – – + 
cde 65.9 – – + + + + – – – – – – + + + 

abcde 68.0 + + + + + + + + + + + + + + + 

 

Thus  ( ) 250.2
16

0.68...4.701.724.70 2
=

++−−
=SSA , SSB = 7.840, SSC = .360, SSD = 52.563, SSE = 

10.240, SSAB = 1.563, SSAC = 7.563, SSAD = .090, SSAE = 4.203, SSBC = 2.103, SSBD = .010, SSBE 
= .123, SSCD = .010, SSCE = .063, SSDE = 4.840, Error SS = sum of two factor SS’s = 20.568, Error MS 
= 2.057, 04.1010,1,01. =F , so only the D main effect is significant. 

 
 

Supplementary Exercises 
 
50.  

Source df SS MS f 
Treatment 4 14.962 3.741 36.7 

Block 8 9.696   
Error 32 3.262 .102  
Total 44 27.920   

 

The P-value for testing 0 1 2 3 4 5: 0H α α α α α= = = = =  is based on the F4,32 distribution. Since the 
calculated value of 36.7 is off the chart for df = (4, 30), we infer the P-value is < .001, and H0 is rejected.  
We conclude that expected smoothness score does depend somehow on the drying method used. 
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51.  

Source df SS MS F 
A 1 322.667 322.667 980.38 
B 3 35.623 11.874 36.08 

AB 3 8.557 2.852 8.67 
Error 16 5.266 .329  
Total 23 372.113   

 

We first test the null hypothesis of no interactions ( 0 : 0AB ijH γ =  for all i, j). At df = (3, 16), 5.29 < 8.67 < 
9.01 ⇒ .01 < P-value < .001. Therefore, H0 is rejected.  Because we have concluded that interaction is 
present, tests for main effects are not appropriate. 

 
 

52. Let Xij = the amount of clover accumulation when the ith sowing rate is used in the jth plot = 
i j ijeµ α β+ + + .   

Source df SS MS F 
Treatment 3 3,141,153.5 1,040,751.17 2.28 

Block 3 19,470,550.0   
Error 9 4,141,165.5 460,129.50  
Total 15 26,752,869.0   

 
At df = (3, 9), 2.28 < 2.81 ⇒ P-value > .10. Hence, H0 is not rejected.  Expected accumulation does not 
appear to depend on sowing rate.  

 
53. Let A = spray volume, B = belt speed, C = brand. The Yates table and ANOVA table are below. At degrees 

of freedom = (1, 8), a P-value less than .05 requires F > F.05,1,8 = 5.32. So all of the main effects are 
significant at level .05, but none of the interactions are significant. 

Condition Total 1 2 Contrast ( )
16

2contrastSS =  
(1) 76 129 289 592 21,904.00 
A 53 160 303 22 30.25 
B 62 143 13 48 144.00 

AB 98 160 9 134 1122.25 
C 88 –23 31 14 12.25 

AC 55 36 17 –4 1.00 
BC 59 –33 59 –14 12.25 

ABC 101 42 75 16 16.00 
 

Effect df MS F 
A 1 30.25 6.72 
B 1 144.00 32.00  

AB 1 1122.25 249.39 
C 1 12.25 2.72 

AC 1 1.00 .22 
BC 1 12.25 2.72 

ABC 1 16.00 3.56 
Error 8 4.50  
Total 15   
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54. We use Yates’ method for calculating the sums of squares, and for ease of calculation, we divide each 
observation by 1000. 

Condition Total 1 2 Contrast ( )
8

2contrastSS =  

(1) 23.1 66.1 213.5 317.2 – 
A 43.0 147.4 103.7 20.2 51.005 
B 71.4 70.2 24.5 44.6 248.645 

AB 76.0 33.5 –4.3 –12.0 18.000 
C 37.0 19.9 81.3 –109.8 1507.005 

AC 33.2 4.6 –36.7 –28.8 103.68 
BC 17.0 –3.8 –15.3 –118.0 1740.5 

ABC 16.5 –.5 3.3 18.6 43.245 
 

We assume that there is no three-way interaction, so MSABC becomes the MSE for ANOVA: 

Source df MS F 
A 1 51.005 1.179 
B 1 248.645 5.750 

AB 1 18.000 < 1 
C 1 1507.005 34.848 

AC 1 103.68 2.398 
BC 1 1740.5 40.247 

Error 1 43.245  
Total 7   

 
A P-value less than .05 requires an F statistic greater than F.05,1,1.  Unfortunately, F.05,1,1 = 161.45, so that 
we cannot conclude any of these terms is significant at the 5% level. Even if we assume two-way 
interactions are absent, none of the main effects is statistically significant (again due to extremely low 
power via the error df). 

 
55.  

a.  

Effect %Iron 1 2 3 
Effect 

Contrast SS 
 7 18 37 174 684  

A 11 19 137 510 144 1296 
B 7 62 169 50 36 81 

AB 12 75 341 94 0 0 
C 21 79 9 14 272 4624 

AC 41 90 41 22 32 64 
BC 27 165 47 2 12 9 

ABC 48 176 47 –2 –4 1 
D 28 4 1 100 336 7056 

AD 51 5 13 172 44 121 
BD 33 20 11 32 8 4 

ABD 57 21 11 0 0 0 
CD 70 23 1 12 72 324 

ACD 95 24 1 0 –32 64 
BCD 77 25 1 0 –12 9 

ABCD 99 22 –3 –4 –4 1 
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We use estimate = contrast/2p when n = 1 to get 1 4

144 144ˆ 9.00
2 16

α = = = , 1
36ˆ 2.25
16

β = = , 

1
272ˆ 17.00
16

δ = = , 1
336ˆ 21.00
16

γ = = .  Similarly,  
11

0αβ
∧  = 

 
, 

11

2.00αδ
∧  = 

 
, 

11

2.75αγ
∧  = 

 
, 

11

.75βδ
∧  = 

 
, 

11

.50βγ
∧  = 

 
,  and 

11

4.50δγ
∧  = 

 
. 

 
b. The plot suggests main effects A, C, and D are quite important, and perhaps the interaction CD as well. 

In fact, pooling the 4 three-factor interaction SS’s and the four-factor interaction SS to obtain an SSE 
based on 5 df and then constructing an ANOVA table suggests that these are the most important 
effects. 
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56. The entries of this ANOVA table were produced with software. 

Source df SS MS F 
Health 1 0.5880 0.5880 27.56 

pH 2 0.6507 0.3253 15.25 
Interaction 2 0.1280 0.0640   3.00 

Error 24 0.5120 0.0213  
Total 29 1.8787   

 
First we test the interaction effect: at df = (2, 24), 2.54 < 3.00 <  3.40 ⇒ .05 < P-value < .10. Hence, we can 
fail to reject the no-interaction hypothesis at the .05 significance level and proceed to consider the main 
effects.  
Both F statistics are highly statistically significant at the relevant df (P-values < .001), so we conclude that 
both the health of the seedling and its pH level have an effect on the average rating. 
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57. The ANOVA table is: 

Source df SS MS F F.01, num df, den df 
A 2   67553   33777  11.37 5.49 
B 2   72361   36181  12.18 5.49 
C 2  442111  221056  74.43 5.49 

AB 4    9696    2424   0.82 4.11 
AC 4    6213    1553   0.52 4.11 
BC 4   34928    8732   2.94 4.11 

ABC 8   33487    4186   1.41 3.26 
Error 27   80192    2970   
Total 53  746542    

 

A P-value less than .01 requires an F statistic greater than the F.01 value at the appropriate df (see the far 
right column). All three main effects are statistically significant at the 1% level, but no interaction terms are 
statistically significant at that level. 

 
 

58.  
Source df SS MS F F.05, num df, den df 

A(pressure) 1 6.94 6.940 11.57 4.26 
B(time) 3 5.61 1.870 3.12 3.01 

C(concen.) 2 12.33 6.165 10.28 3.40 
AB 3 4.05 1.350 2.25 3.01 
AC 2 7.32 3.660 6.10 3.40 
BC 6 15.80 2.633 4.39 2.51 

ABC 6 4.37 .728 1.21 2.51 
Error 24 14.40 .600   
Total 47 70.82    

 

A P-value less than .05 requires an F statistic greater than the F.05 value at the appropriate df (see the far 
right column). The three-factor interaction (ABC) is not statistically significant.  However, both the AC and 
BC two-factor interactions appear to be present. 

 

59. Based on the P-values in the ANOVA table, statistically significant factors at the level .01 are adhesive 
type and cure time.  The conductor material does not have a statistically significant effect on bond strength.  
There are no significant interactions. 

 
60. Minitab provides the accompanying 3-way ANOVA, assuming no interaction effects. We see that both 

cutting speed and feed have statistically significant effects on tool life (both P-values are less than .01), but 
cutting depth has a marginally significant effect (P-value = .081). 

 
Analysis of Variance for Tool Life 
 
Source     DF      SS      MS        F      P 
Cut speed   1  850.78  850.78  1815.00  0.000 
Feed        1   11.28   11.28    24.07  0.008 
Cut depth   1    2.53    2.53     5.40  0.081 
Error       4    1.88    0.47 
Total       7  866.47 
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61. ( )
2

2 2 ....
... .... ...

1
i i

i j

XSSA X X X
N N

= − = Σ −∑∑  , with similar expressions for SSB, SSC, and SSD, each having 

N – 1 df. 

( )
22 2 ....

( ) .... ( )ij kl ij kl
i j i j

XSST X X X
N

= − = −∑∑ ∑∑  with N2 – 1 df, leaving 2 1 4( 1)N N− − − df for error. 

 1 2 3 4 5 2xΣ  

:...ix  482 446 464 468 434 1,053,916 

:... jx  470 451 440 482 451 1,053,626 

:...kx  372 429 484 528 481 1,066,826 

:...lx  340 417 466 537 534 1,080,170 

 

Also, 2
( ) 220,378ij klxΣΣ = , .... 2294x = , and CF = 210,497.44. 

Source df SS MS F 
A  4 285.76 71.44 .594 
B  4 227.76 56.94 .473 
C 4 2867.76 716.94 5.958 
D 4 5536.56 1384.14 11.502 

Error 8 962.72 120.34  
Total 24    

At df = (4, 8), a P-value less than .05 requires an F-statistic greater than F.05,4,8 = 3.84. H0A and H0B cannot 
be rejected, while H0C and H0D are rejected. 
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CHAPTER 12 
 

Section 12.1 
 
1.  

a. Stem and Leaf display of temp:  
 

17 0  
17 23 stem = tens 
17 445 leaf = ones 
17 67  
17   
18 0000011  
18 2222  
18 445  
18 6  
18 8  

  
180 appears to be a typical value for this data.  The distribution is reasonably symmetric in appearance 
and somewhat bell-shaped.  The variation in the data is fairly small since the range of values (188 – 
170 = 18) is fairly small compared to the typical value of 180. 

 
0 889  
1 0000 stem = ones 
1 3 leaf = tenths 
1 4444  
1 66  
1 8889  
2 11  
2   
2 5  
2 6  
2   
3 00  

 
For the ratio data, a typical value is around 1.6 and the distribution appears to be positively skewed. 
The variation in the data is large since the range of the data (3.08 - .84 = 2.24) is very large compared 
to the typical value of 1.6.  The two largest values could be outliers. 

 
b. The efficiency ratio is not uniquely determined by temperature since there are several instances in the 

data of equal temperatures associated with different efficiency ratios.  For example, the five 
observations with temperatures of 180 each have different efficiency ratios. 
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c. A scatter plot of the data appears below.  The points exhibit quite a bit of variation and do not appear 
to fall close to any straight line or simple curve. 

 
 

 
2. Scatter plots for the emissions vs age: 
  

 
With this data the relationship between the age of the lawn mower and its NOx emissions seems somewhat 
dubious.  One might have expected to see that as the age of the lawn mower increased the emissions would 
also increase.  We certainly do not see such a pattern.  Age does not seem to be a particularly useful 
predictor of NOx emission. 

 
 

170 180 190

1

2

3

Temp:

R
at

io
:

0 5 10 15

0

1

2

3

4

5

Age:

B
as

el
in

e

151050

7

6

5

4

3

2

1

0

Age:

R
ef

or
m

ul



Chapter 12:  Simple Linear Regression and Correlation 

 332 

3. A scatter plot of the data appears below.  The points fall very close to a straight line with an intercept of 
approximately 0 and a slope of about 1.  This suggests that the two methods are producing substantially the 
same concentration measurements. 
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4. The accompanying scatterplot shows a strong, negative, linear association between transpiration and 
ammonium concentration. Based on the strong linearity of the scatterplot, it does seem reasonable to use 
simple linear regression modeling for these two variables. 
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5.  

a. The scatter plot with axes intersecting at (0,0) is shown below. 
 

 
b. The scatter plot with axes intersecting at (55, 100) is shown below. 

 
c. A parabola appears to provide a good fit to both graphs. 

 
 
6. There appears to be a linear relationship between racket resonance frequency and sum of peak-to-peak 

acceleration.  As the resonance frequency increases the sum of peak-to-peak acceleration tends to decrease.  
However, there is not a perfect relationship.  Variation does exist.  One should also notice that there are two 
tennis rackets that appear to differ from the other 21 rackets.  Both have very high resonance frequency 
values.  One might investigate if these rackets differ in other ways as well. 

 
7.  

a. ( )2500 1800 1.3 2500 5050Yµ ⋅ = + =  
 
b. expected change = slope = β1 = 1.3 
 
c. expected change = 100β1 = 130  
 
d. expected change = –100β1 = –130 
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8.  

a. ( )2000 1800 1.3 2000 4400Yµ ⋅ = + = , and σ = 350, so P(Y > 5000) = 5000 4400
350

P Z − > 
 

 = P(Z > 1.71) 

= .0436.  
 
b. Now E(Y) = 5050, so ( ) ( )5000 .14 .5557P Y P Z> = > − = . 
 
c. 2 1 2 1( ) ( ) ( ) 5050 4400 650E Y Y E Y E Y− = − = − = , and 

( ) ( )2 2
2 1 2 1( ) ( ) ( ) 350 350 245,000V Y Y V Y V Y− = + = + = , so the sd of Y2 – Y1 is 494.97.  

Thus ( )2 1
1000 650( 0) .71 .2389

494.97
P Y Y P Z P Z− − > = > = > = 

 
. 

 
d. The standard deviation of Y2 – Y1 is 494.97 (from c), and 

( ) ( )2 1 2 1 2 1( ) 1800 1.3 1800 1.3 1.3E Y Y x x x x− = + − + = − .  Thus 

( )2 1
2 1 2 1

1.3
( ) ( 0) .95

494.97
x x

P Y Y P Y Y P z
− − 

> = − > = > = 
 

 implies that ( )2 11.3
1.645

494.97
x x− −

− = , so x2 – x1 

= 626.33. 
 
 
9.  

a. β1 = expected change in flow rate (y) associated with a one inch increase in pressure drop (x) = .095. 
 
b. We expect flow rate to decrease by 5β1 = .475. 
 
c. ( )10 .12 .095 10 .83Yµ ⋅ = − + = , and ( )15 .12 .095 15 1.305Yµ ⋅ = − + = . 
 

d. ( ) ( ).835 .830.835 .20 .4207
.025

P Y P Z P Z− > = > = > = 
 

. 

( ) ( ).840 .830.840 .40 .3446
.025

P Y P Z P Z− > = > = > = 
 

. 

 
e. Let Y1 and Y2 denote pressure drops for flow rates of 10 and 11, respectively.  Then  11 .925Yµ ⋅ = , so   

Y1 – Y2 has expected value .830 – .925 = –.095, and sd ( ) ( )2 2.025 .025 .035355+ = .  Thus 

( )1 2 1 2
0 ( .095)( ) ( 0) 2.69 .0036

.035355
P Y Y P Y Y P z P Z− − > = − > = > = > = 

 
. 

 
10. No. Y has expected value 5000 when x = 100 and 6000 when x = 200, so the two probabilities become 

500 .05P z
σ

 > = 
 

 and 500 .10P z
σ

 > = 
 

.  These two equations are contradictory. 
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11.  

a. β1 = expected change for a one degree increase = –.01, and 10β1 = –.1 is the expected change for a 10 
degree increase. 

 
b. ( )200 5.00 .01 200 3Yµ ⋅ = − = , and 250 2.5Yµ ⋅ = . 
 
c. The probability that the first observation is between 2.4 and 2.6 is 

( ) 2.4 2.5 2.6 2.52.4 2.6
.075 .075

P Y P Z− − ≤ ≤ = ≤ ≤ 
 

= P(–1.33 ≤ Z ≤ 1.33) = .8164.  The probability that 

any particular one of the other four observations is between 2.4 and 2.6 is also .8164, so the probability 
that all five are between 2.4 and 2.6 is (.8164)5 = .3627. 

 
d. Let Y1 and Y2 denote the times at the higher and lower temperatures, respectively.  Then Y1 – Y2 has 

expected value ( ) ( )5.00 .01 1 5.00 .01 .01x x− + − − = − .  The standard deviation of Y1 – Y2 is 

( ) ( )2 2.075 .075 .10607+ = .  Thus ( ) ( )1 2

.01
( 0) .09 .4641

.10607
P Y Y P Z P Z

− − 
− > = > = > = 

 
. 
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Section 12.2 
 
12.  

a. From the summary provided, 1
341.959231ˆ

1585.230769
xy

xx

S
S

β −
= = = –0.21572 and 

( )( )1
0

ˆ 52.8 .21572 303.7ˆ
13

y x
n
ββ

− −Σ − Σ
= = = 9.1010. So the equation of the least squares regression 

line is ŷ = 9.1010 – .21572x. 
Based on this equation, the predicted ammonium concentration (y) when transpiration (x) is 25 ml/h is 
ŷ(25) = 9.1010 – .21572(25) = 3.708 mg/L.  

 
b. If you plug x = 45 into the least squares regression line, you get ŷ(45) = 9.1010 – .21572(45) =  –0.606. 

That’s an impossible ammonium concentration level, since concentration can’t be negative. But it 
doesn’t make sense to predict y at x = 45 from this data set, because x = 45 is well outside of the scope 
of the data (this is an example of extrapolation and its potential adverse consequences). 

 
c. With the aid of software, SSE = 2 13

1
213

1
( ( [9.1010 .21572ˆ ) )]i i i ii i
y y xy

= =
− = − −∑ ∑  = … = 3.505. Or, 

using the available sum of squares and a derivation similar to the one described in the section, SSE = 
Syy – 1̂ xySβ = 77.270769 – (–.21572)(–341.959231) = 3.505.  Either way, the residual standard 

deviation is SSE 3.505
2 13 2

s
n

= =
− −

 = 0.564. 

The typical difference between a sample’s actual ammonium concentration and the concentration 
predicted by the least squares regression line is about ±0.564 mg/L. 

 

d. With SST = Syy = 77.270769, 2 SSE 3.5051 1
SST 77.270769

r = − = − = .955. So, the least squares regression line 

helps to explain 95.5% of the total variation in ammonium concentration. Given that high percentage 
and the linear relationship visible in the scatterplot (see Exercise 4), yes, the model does a good job of 
explaining observed variation in ammonium concentration. 
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13. For this data, n = 4, 200ixΣ = , 5.37iyΣ = , 2 12.000ixΣ = , 2 9.3501iyΣ = , 333i ix yΣ =  ⇒ 

( )2200
12,000 2000

4xxS = − = , SST = ( )25.37
9.3501 2.140875

4yyS = − = , ( )( )200 5.37
333 64.5

4xyS = − =  

⇒ 1
64.5ˆ .03225
2000

xy

xx

S
S

β = = =  ⇒ ( )( )1̂ 2.14085 .03225 64.5 .060750yy xySSE S Sβ= − = − = .  From these 

calculations, 2 .0607501 1 .972
2.14085

SSEr
SST

= − = − = .  This is a very high value of r2, which confirms the 

authors’ claim that there is a strong linear relationship between the two variables. (A scatter plot also shows 
a strong, linear relationship.) 

 
 
14.  

a. n = 24, 4308ixΣ = , 40.09iyΣ = , 2 773,790ixΣ = , 2 76.8823iyΣ = , 7,243.65i ix yΣ =  ⇒  

( ) 0.504
24

4308790,773
2

=−=xxS , ( ) 9153.9
24
09.408823.76

2

=−=yyS , 

( )( ) 8246.45
24

09.40430865.243,7 =−=xyS  ⇒ 09092.
504
8246.45ˆ

1 ===
xx

xy

S
S

β  , 

( )0
40.09 4308ˆ .09092 14.6497

24 24
β = − = − .  Therefore, the equation of the estimated regression line is         

ŷ = –14.6497 + .09092x. 
 
b. When x = 182, ˆ 14.6497 .09092(182) 1.8997y = − + = . So when the tank temperature is 182, we would 

predict an efficiency ratio of 1.8997. 
 
c. The four observations for which temperature is 182 are:  (182, .90), (182, 1.81), (182, 1.94), and (182, 

2.68).  Their corresponding residuals are: .90 1.8997 0.9977− = − ,  1.81 1.8997 0.0877− = − , 
1.94 1.8997 0.0423− = , 2.68 1.8997 0.7823− = .  These residuals do not all have the same sign 
because in the cases of the first two pairs of observations, the observed efficiency ratios were smaller 
than the predicted value of 1.8997.  Whereas, in the cases of the last two pairs of observations, the 
observed efficiency ratios were larger than the predicted value. 

 

d. ( )( )1̂SSE 9.9153 .09092 45.8246 5.7489yy xyS Sβ= − = − = ⇒   2 SSE 5.74891 1 .4202
SST 9.9153

r = − = − = . 

42.02% of the observed variation in efficiency ratio can be attributed to the approximate linear 
relationship between the efficiency ratio and the tank temperature. 
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15.  

a. The following stem and leaf display shows that: a typical value for this data is a number in the low 
40’s. There is some positive skew in the data. There are some potential outliers (79.5 and 80.0), and 
there is a reasonably large amount of variation in the data (e.g., the spread 80.0-29.8 = 50.2 is large 
compared with the typical values in the low 40’s). 

 
2 9  
3 33 stem = tens 
3 5566677889 leaf = ones 
4 1223  
4 56689  
5 1  
5   
6 2  
6 9  
7   
7 9  
8 0  

 
b. No, the strength values are not uniquely determined by the MoE values.  For example, note that the 

two pairs of observations having strength values of 42.8 have different MoE values. 
 
c. The least squares line is ŷ = 3.2925 + .10748x.  For a beam whose modulus of elasticity is x = 40, the 

predicted strength would be ŷ = 3.2925 + .10748(40) = 7.59.  The value x = 100 is far beyond the range 
of the x values in the data, so it would be dangerous (i.e., potentially misleading) to extrapolate the 
linear relationship that far. 

 
d. From the output, SSE = 18.736, SST = 71.605, and the coefficient of determination is r2 = .738 (or 

73.8%).  The r2 value is large, which suggests that the linear relationship is a useful approximation to 
the true relationship between these two variables. 

 
16.  

a.  
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Yes, the scatterplot shows a strong linear relationship between rainfall volume and runoff volume, thus 
it supports the use of the simple linear regression model. 
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b. 53.200x = , 42.867y = , ( )2798
63040 20,586.4

15xxS = − = , ( )2643
41,999 14,435.7

15yyS = − = , and 

( )( )798 643
51,232 17,024.4

15xyS = − =  ⇒ 1
17,024.4ˆ .82697
20,586.4

xy

xx

S
S

β = = =  and 

( )0
ˆ 42.867 .82697 53.2 1.1278β = − = − . 

 
c. 50 1.1278 .82697(50) 40.2207yµ ⋅ = − + = . 
 

d. ( )( )1̂SSE 14,435.7 .82697 17,324.4 357.07yy xyS Sβ= − = − =  ⇒ 357.07 5.24
15 2

s = =
−

. 

 

e. 2 SSE 357.071 1 .9753
SST 14,435.7

r = − = − = .  So 97.53% of the observed variation in runoff volume can be 

attributed to the simple linear regression relationship between runoff and rainfall. 
 
17.  

a. From software, the equation of the least squares line is ŷ = 118.91 – .905x. The accompanying fitted 
line plot shows a very strong, linear association between unit weight and porosity. So, yes, we 
anticipate the linear model will explain a great deal of the variation in y. 
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R-Sq 97.4%
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porosity =  118.9 - 0.9047 weight

 
 

b. The slope of the line is b1 = –.905. A one-pcf increase in the unit weight of a concrete specimen is 
associated with a .905 percentage point decrease in the specimen’s predicted porosity. (Note: slope is 
not ordinarily a percent decrease, but the units on porosity, y, are percentage points.) 

 
c. When x = 135, the predicted porosity is ŷ = 118.91 – .905(135) = –3.265. That is, we get a negative 

prediction for y, but in actuality y cannot be negative! This is an example of the perils of extrapolation; 
notice that x = 135 is outside the scope of the data. 

 
d. The first observation is (99.0, 28.8). So, the actual value of y is 28.8, while the predicted value of y is 

118.91 – .905(99.0) = 29.315. The residual for the first observation is y – ŷ = 28.8 – 29.315 = –.515 ≈ 
–.52. Similarly, for the second observation we have ŷ = 27.41 and residual = 27.9 – 27.41 = .49. 
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e. From software and the data provided, a point estimate of σ is s = .938. This represents the “typical” 
size of a deviation from the least squares line. More precisely, predictions from the least squares line 
are “typically” ± .938% off from the actual porosity percentage. 
 

f. From software, r2 = 97.4% or .974, the proportion of observed variation in porosity that can be 
attributed to the approximate linear relationship between unit weight and porosity. 

 
18. Minitab output is provided below. 

a. Using software and the data provided, the equation of the least squares regression line is given by        
ŷ = –31.80 + 0.987x. So, a one-MPa increase in cube strength is associated with a 0.987 MPa increase 
in the predicted axial strength for these asphalt samples.  

 
b. From software, r2 = .630. That is, 63.0% of the observed variation in axial strength of asphalt samples 

of this type can be attributed to its linear relationship with cube strength. 
 
c. From software, a point estimate of σ is s = 6.625. This is the “typical” size of a residual. That is, the 

model’s prediction for axial strength will typically differ by ± 6.625 MPa from the specimen’s actual 
axial strength. 

 
Regression Analysis: y versus x  
 
The regression equation is 
y = - 31.8 + 0.987 x 
 
 
Predictor    Coef  SE Coef      T      P 
Constant   -31.80    25.87  -1.23  0.254 
x          0.9870   0.2674   3.69  0.006 
 
 
S = 6.62476   R-Sq = 63.0%   R-Sq(adj) = 58.4% 

 
19. n = 14, 3300ixΣ = , 5010iyΣ = , 2 913,750ixΣ = , 2 2,207,100iyΣ = , 1,413,500i ix yΣ =  

a. 1
3,256,000ˆ 1.71143233
1,902,500

β = = , 0
ˆ 45.55190543β = − ,  so the equation of the least squares line is 

roughly ŷ = –45.5519 + 1.7114x. 
 
b. ( )225ˆ 45.5519 1.7114 225 339.51Yµ ⋅ = − + = . 
 
c. Estimated expected change 1̂50 85.57β= − = − . 
 
d. No, the value 500 is outside the range of x values for which observations were available (the danger of 

extrapolation). 
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20.  

a. The accompanying scatterplot shows a reasonably strong, positive, linear relationship between 
pressure and the bond capacity ratio. The linearity of the graph supports the use of a linear model. 

 

0.60.50.40.30.20.10.0

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Pressure (proportion of cube strength)

Bo
nd

 c
ap

ac
ity

 ra
tio

 
 

b. The slope and intercept estimates appear in the least squares equation: 1̂β = .461, 0β̂ = .101. Their more 
precise values of .46071 and .10121, respectively, appear in the table below the equation.  

 
c. Substitute x = .45 to get ŷ = .10121 + .46071(.45) = .3085. 
 
d. From the Minitab output, an estimate of σ is s = 0.0332397. This represents the typical difference 

between a concrete specimen’s actual bond capacity ratio and the ratio predicted by the least squares 
regression line. 
 

e. The total variation in bond capacity ratio is SST = 0.19929. 89.5% of this variation can be explained 

by the model.  Note: SSE 0.020991 1
SST 0.19929

− = − = .895, which matches r2 on output. 

 
21.  

a. Yes – a scatter plot of the data shows a strong, linear pattern, and r2 = 98.5%. 
 
b. From the output, the estimated regression line is ŷ = 321.878 + 156.711x, where x = absorbance and y 

= resistance angle.  For x = .300, ŷ = 321.878 + 156.711(.300) = 368.89. 
 
c. The estimated regression line serves as an estimate both for a single y at a given x-value and for the 

true average μy at a given x-value. Hence, our estimate for μy when x = .300 is also 368.89. 
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22.  

a. Software (Minitab) provides the accompanying output. The least squares regression line for this data is 
ŷ = 11.0 – 0.448x. The coefficient of determination is 69.4% or .694, meaning that 69.4% of the 
observed variation in compressive strength (y) can be attributed to a linear model relationship with 
fiber weight (x). Finally, a point estimate of σ = V(ε) is s = 1.08295. 

 
Regression Analysis: y versus x  
 
The regression equation is 
y = 11.0 - 0.448 x 
 
 
Predictor      Coef  SE Coef      T      P 
Constant    11.0129   0.3289  33.49  0.000 
x          -0.44805  0.06073  -7.38  0.000 
 
 
S = 1.08295   R-Sq = 69.4%   R-Sq(adj) = 68.1% 
 
b. The accompanying Minitab output corresponds to least squares regression through the six points (0, 

11.05), (1.25, 10.51), (2.50, 10.32), (5, 8.15), (7.5, 6.93), (10, 7.24). Notice the least squares regression 
line is barely different; however, we now have r2 = 90.2% = .902. This is markedly higher than r2 for 
the original data. A linear model can explain 69.3% of the observed variation in compressive strength, 
but 90.2% of the observed variation in average compressive strength. 
 
In general, averaged y-values (the six response values here) will have less variation than individual 
values (the 26 original observations). Therefore, there is less observed variation in the “response 
variable,” and the least squares line can account for a larger proportion of that variation.  

 
Regression Analysis: avg y versus x  
 
The regression equation is 
avg y = 11.0 - 0.445 x 
 
 
Predictor      Coef  SE Coef      T      P 
Constant    10.9823   0.4114  26.69  0.000 
x          -0.44547  0.07330  -6.08  0.004 
 
S = 0.631439   R-Sq = 90.2%   R-Sq(adj) = 87.8% 

 
 
23.  

a. Using the given yi’s and the formula ii xy 7114.15519.45ˆ +−=  , 

( ) ( ) 64.213,160.639670...6.125150 22 =−++−=SSE .  The computation formula gives 
( )( ) ( )( )500,413,171143233.1501055190543.45100,207,2 −−−=SSE  45.205,16=  

 

b. ( ) 71.235,414
14

5010100,207,2
2
=−=SST  so 961.

71.235,414
45.205,1612 =−=r . 
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24.  
a. From software, the least squares line is ŷ = –305.9 + 9.963x. When x = 70, ŷ = 392; the residual 

corresponding to the point (70, 13) is y – ŷ = 13 – 392 = –379. When x = 71, 402; the residual 
corresponding to the point (71, 1929) is y – ŷ = 1929 – 402 = 1527. Both residuals are extraordinarily 
large, but the residual for the first point is large and negative (the line greatly over-estimates the true 
colony density) while the residual for the second point is large and positive (the line greatly under-
estimates the true, enormous colony density for that observation). 

 

b. From software, r2 = 2900SS 80E1 1
SST

7
3310341

− = −  = .124, or 12.4%. Just 12.4% of the total variation in 

colony density can be explained by a linear regression model with rock surface area as the predictor. 
 
c. The table below compares the least squares equation, s, and r2 for the two data sets (the 15 

observations provided, and the 14 points left when the outlier is removed). Everything changes 
radically. The slope and intercept are completely different without the outlier; the residual standard 
deviation decreases by a factor of 5; and r2 decreases to an even smaller 2.4%.  
 

 With outlier (n = 15) Without outlier (n = 14) 
Least squares line ŷ = –305.9 + 9.963x ŷ = 34.37 + 0.779x 

s 472.376 87.222 
r2 12.4% 2.4% 

 

25. Substitution of 1
0

ˆˆ i iy x
n
ββ Σ − Σ

=  and 1̂β  for b0 and b1 on the left-hand side of the first normal equation 

yields 1
1 1 1

ˆ ˆ ˆ ˆi i
i i i i i

y xn x y x x y
n
β β β βΣ − Σ

+ Σ = Σ − Σ + Σ = Σ , which verifies they satisfy the first one. The same 

substitution in the left-hand side of the second equation gives 

( )( ) ( )
( )( ) ( )( )2

11
1

2

2
ˆˆ

ˆ i

i

i i ii i i x y n x xx y x
x

n n

ββ
β

Σ Σ + Σ − ΣΣ Σ − Σ
+ Σ = = ( )( ) ( )( )2

1
2ˆ/ /i i iix y n x x nβΣ Σ + Σ − Σ . The 

last term in parentheses is Sxx, so making that substitution along with Equation (12.2) we have  

( )( ) ( ) ( )( )/ /i i i i
xy

xx xy
xx

S
x y n S x y n S

S
Σ Σ + = Σ Σ + . By the definition of Sxy, this last expression is exactly 

iix yΣ  , which verifies that the slope and intercept formulas satisfy the second normal equation. 
 
 

26. We must show that when x  is substituted for x in 0 1
ˆ ˆ xβ β+ , y results, so that ( , )x y  is on the least squares 

line: 1
0 1 1 1 1

ˆˆ ˆ ˆ ˆ ˆi iy xx x y x x y
n
ββ β β β βΣ − Σ

+ = + = − + = . 

 
 

27. We wish to find b1 to minimize ( )2
1 1( ) i if b y b x= −∑ .  Equating 1)(f b′  to 0 yields 

( ) ( )1
12 0i i iy b x x − − = ∑ ⇒ 2

12 0i i iy xx b − + = ∑ ⇒ 2
1 iii xbyx Σ=Σ and 

21
i

ii

x
yx

b
Σ

Σ
= .  The least squares 

estimator of 1β̂  is thus 21
ˆ

i

ii

x
Yx

Σ

Σ
=β . 
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28.  
a. In the figure below, the left-hand panel shows the original y versus x, while the right-hand panel shows 

the new plot y versus x x− . Subtracting x from each xi shifts the plot horizontally without otherwise 
altering its character.  The least squares line for the new plot will thus have the same slope as the one 
for the old plot.  As for the intercept, Exercise 26 showed that ( , )x y  lies on the least squares line in 
the left-hand plot; shifting that horizontally by x implies that the point (0, )y lies on the least squares 
line in the right-hand plot. (The mean ratio is about y = .24, and the point (0, .24) does seem to lie on 
the right-hand line.) In other words, the new intercept is y  itself. 
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b. We want b0 and b1 that minimize f(b0, b1) = ( )( ) 2

0 10 1( , ) i if b y b b xb x − + − =∑ .  Equating 
0

f
b
∂
∂

 and 

1

f
b
∂
∂

to 0 yields ( )0 1 i inb b x x y+ Σ − = Σ and ( ) ( ) ( )2
0 1i i i ib x x b x x x yxΣ − + Σ −− = Σ .   

Since ( ) 0ix xΣ − = , the first equation implies 0b y=  (as noted in a) and the second equation becomes 

( )
( )1 2

i

i

ix y
b

x
x
x

−Σ
=
Σ −

. But this expanding the top sum provides 
( )( )
( )1 2

/i i i i

i

n
b

x
x x

x y yΣ

Σ

Σ Σ−
=

−
 = xy

xx

S
S

 = 1̂β  

from Equation (12.2).  Therefore, the intercept and slope estimators under this modified regression 
model are *

0
ˆ Yβ =  and *

1 1
ˆ ˆβ β= ; again, this is what the graph in a implied. 

 
 

29. For data set #1, r2 = .43 and s = 4.03; for #2, r2 = .99 and s = 4.03; for #3, r2 = .99 and s = 1.90.  In general, 
we hope for both large r2 (large % of variation explained) and small s (indicating that observations don’t 
deviate much from the estimated line).  Simple linear regression would thus seem to be most effective for 
data set #3 and least effective for data set #1. 
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Section 12.3 
 
30.  

a. ( )2 7,000,000ix xΣ − = , so ( ) ( )2

1

350ˆ .0175
7,000,000

V β = =  and the standard deviation of 1̂β  is 

.0175 .1323= . 
 

b. ( )1
1.0 1.25 1.5 1.25ˆ1.0 1.5

.1323 .1323
P P Zβ − − ≤ ≤ = ≤ ≤ 

 
 ( )1.89 1.89 .9412P Z= − ≤ ≤ = . 

 
c. Although n = 11 here and n = 7 in a, ( )2 1,100,000ix xΣ − =  now, which is smaller than in a.  Because 

this appears in the denominator of ( )1̂V β , the variance is smaller for the choice of x values  in a. 

31.   
a. Software output from least squares regression on this data appears below. From the output, we see that 

r2 = 89.26% or .8926, meaning 89.26% of the observed variation in threshold stress (y) can be 
attributed to the (approximate) linear model relationship with yield strength (x). 
 

Regression Equation 
 
y  =  211.655 - 0.175635 x 
 
Coefficients 
 
Term         Coef  SE Coef        T      P        95% CI 
Constant  211.655  15.0622  14.0521  0.000  (178.503, 244.807) 
x          -0.176   0.0184  -9.5618  0.000  ( -0.216,  -0.135) 
 
Summary of Model 
 
S = 6.80578      R-Sq = 89.26%        R-Sq(adj) = 88.28% 

 
b. From the software output, 1̂β = –0.176 and 

1̂
s
β

= 0.0184. Alternatively, the residual standard deviation 

is s = 6.80578, and the sum of squared deviations of the x-values can be calculated to equal Sxx = 
2( )ix x−∑ = 138095. From these, 

1̂
s
β

=
xx

s
S

= .0183 (due to some slight rounding error). 

 
c. From the software output, a 95% CI for β1 is (–0.216, –0.135). This is a fairly narrow interval, so β1 

has indeed been precisely estimated. Alternatively, with n = 13 we may construct a 95% CI for β1 as 

1̂
1 .025,12

ˆ t s
β

β ± = –0.176 ± 2.179(.0184) = (–0.216, –0.136). 

 
 
32. Let β1 denote the true average change in runoff for each 1 m3 increase in rainfall.  To test the hypotheses 

H0: β1 = 0 versus Ha: β1 ≠ 0, the calculated t statistic is 
1

1

ˆ

ˆ 0 .82697 22.64
.03652

t
s
β

β −
= = =  which (from the 

printout) has an associated P-value of ~0.000.  Therefore, since the P-value is so small, H0 is rejected and 
we conclude that there is a useful linear relationship between runoff and rainfall.   
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A confidence interval for β1 is based on n – 2 = 15 – 2 = 13 degrees of freedom. Since t.025,13 = 2.160, the 
interval estimate is  ( )( ) ( )

1̂
1 .025,13

ˆ .82697 2.160 .03652 .748,.906t s
β

β ± ⋅ = ± = .  Therefore, we can be 

confident that the true average change in runoff, for each 1 m3 increase in rainfall, is somewhere between 
.748 m3 and .906 m3. 

 
33.  

a. Error df = n – 2 = 25, t.025,25 = 2.060, and so the desired confidence interval is 
( )( ) ( )

1̂
1 .025,25

ˆ .10748 2.060 .01280 .081,.134t s
β

β ± ⋅ = ± = .  We are 95% confident that the true average 

change in strength associated with a 1 GPa increase in modulus of elasticity is between .081 MPa and 
.134 MPa. 

 
b. We wish to test H0: β1 ≤ .1 versus Ha: β1 > .1.  The calculated test statistic is 

1

1

ˆ

ˆ .1 .10748 .1 .58
.01280

t
s
β

β − −
= = = , which yields a P-value of .277 at 25 df.  Thus, we fail to reject H0; i.e., 

there is not enough evidence to contradict the prior belief. 
 
 
34.  

a. From the R output, the intercept and slope are 4.858691 and –0.074676, respectively. So, the equation 
of the least squares line is ŷ = 4.858691 – 0.074676x. According to the slope, a one-percentage-point 
increase in air void is associated with an estimated decrease in dielectric constant of 0.074676. 

 
b. From the output, r2 = .7797, or 77.97%. 
 
c. Yes. The hypotheses are H0: β1 = 0 versus Ha: β1 ≠ 0, for which the R output provides a test statistic of 

t = –7.526 and a P-value of 1.21 × 10–6. Based on the extremely small P-value, we strongly reject H0 
and conclude that a statistically significant linear relationship exists between dielectric constant and air 
void percentage. 
 

d. Now the hypotheses of interest are H0: β1 ≥ –.05 versus Ha: β1 < –.05. From the R output, the new test 

statistic is 0.074676 ( .05)
0.009923

t − − −
=  = –2.5. At 16 df, the lower-tailed P-value is .012 from Table A.8. 

Thus, we barely fail to reject H0 at the .01 level: there is insufficient evidence (but only barely) to 
contradict the prior belief. 

 
35.  

a. We want a 95% CI for β1:  Using the given summary statistics, ( ) 019.155
17

1.22269.3056
2
=−=xxS , 

( )( ) 112.238
17

1931.2226.2759 =−=xyS , and  536.1
019.115
112.238ˆ

1 ===
xx

xy

S
S

β .  We need 

( )( ) 715.8
17

1.222536.1193ˆ
0 −=

−
=β  to calculate the SSE: 

( )( ) ( )( )SSE 2975 8.715 193 1.536 2759.6 418.2494= − − − = .  Then 28.5
15
2494.418

==s  and 

1̂

5.28 .424
155.019

s
β
= = .  With t.025,15 = 2.131, our CI is ( )1.536 2.131 .424± ⋅  = (.632, 2.440).  With 

95% confidence, we estimate that the change in reported nausea percentage for every one-unit change 
in motion sickness dose is between .632 and 2.440. 



Chapter 12:  Simple Linear Regression and Correlation 

 347 

 

b. We test the hypotheses H0: β1 = 0 versus Ha: β1 ≠ 0, and the test statistic is 1.536 3.6226
.424

t = = .  With 

df = 15, the two-tailed P-value = 2P(T > 3.6226) = 2(.001) = .002.  With a P-value of .002, we would 
reject the null hypothesis at most reasonable significance levels.  This suggests that there is a useful 
linear relationship between motion sickness dose and reported nausea. 

 
c. No.  A regression model is only useful for estimating values of nausea % when using dosages between 

6.0 and 17.6, the range of values sampled. 
 
d. Removing the point (6.0, 2.50), the new summary stats are: n = 16, 216.1ixΣ = , 191.5iyΣ = , 

2 3020.69ixΣ = , 2 2968.75iyΣ = , 2744.6i ix yΣ = , and then 1̂ 1.561β = , 0
ˆ 9.118β = − , SSE = 430.5264, 

s = 5.55, 
1̂

.551s
β
= , and the new CI is ( )1.561 2.145 .551± ⋅ , or (.379, 2.743).  The interval is a little 

wider.  But removing the one observation did not change it that much.  The observation does not seem 
to be exerting undue influence. 

 
36.  

a. A scatter plot, generated by Minitab, supports the decision to use linear regression analysis. 
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b. We are asked for the coefficient of determination, r2.  From the Minitab output, r2 = .931 (which is 
close to the hand calculated value, the difference being accounted for by round-off error.)  

 
c. Increasing x from 100 to 1000 means an increase of 900.  If, as a result, the average y were to increase 

by .6, the slope would be .6/900 = .0006667.  We should test the hypotheses H0: β1 = .0006667 versus 

Ha: β1 < .0006667. The test statistic is .00062108 .0006667 .601
.00007579

t −
= = − , which is not statistically 

significant.  There is not sufficient evidence that with an increase from 100 to 1000, the true average 
increase in y is less than .6. 

 
d. We are asked for a confidence interval for β1.  Using the values from the Minitab output, we have 

.00062108 2.776(.00007579) (.00041069,.00083147)± = . 
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37.  

a. Let μd = the true mean difference in velocity between the two planes.  We have 23 pairs of data that we 
will use to test H0: μd = 0 v. Ha: μd ≠ 0. From software, dx = 0.2913 with sd = 0.1748, and so t = 

1748.0
02913.0 −

 ≈ 8, which has a two-sided P-value of 0.000 at 22 df. Hence, we strongly reject the null 

hypothesis and conclude there is a statistically significant difference in true average velocity in the two 
planes. [Note: A normal probability plot of the differences shows one mild outlier, so we have slight 
concern about the results of the t procedure.] 

 
b. Let β1 denote the true slope for the linear relationship between Level – – velocity and Level – velocity. 

We wish to test H0: β1 = 1 v. Ha: β1 < 1. Using the relevant numbers provided, t = 
05947.0

165393.0
)(
1

1

1 −
=

−
bs

b
 

= –5.8, which has a one-sided P-value at 23–2 = 21 df of P(T < –5.8) ≈ 0. Hence, we strongly reject the 
null hypothesis and conclude the same as the authors; i.e., the true slope of this regression relationship 
is significantly less than 1. 

 
 
38.  

a. From Exercise 23, which also refers to Exercise 19, SSE = 16.205.45, so s2 = 1350.454, s = 36.75, and 

1̂

36.75 .0997
368.636

s
β
= = .  Thus 1.711 0 17.2

.0997
t −
= = ; at 14 df, the P-value is < .001.  Because the P-value 

< .01,  H0: β1 = 0 is rejected at level .01 in favor of the conclusion that the model is useful (β1 ≠ 0). 
 
b. The CI for β1 is ( )( ) ( )1.711 2.179 .0997 1.711 .217 1.494,1.928± = ± = .  Thus the CI for 10β1 is   

(14.94, 19.28). 
 
 
39. SSE = 124,039.58– (72.958547)(1574.8) – (.04103377)(222657.88) = 7.9679, and SST = 39.828 

 
Source df SS MS f 

Regr 1 31.860 31.860 18.0 

Error 18 7.968 1.77  

Total 19 39.828   
 
 At df = (1, 18), f = 18.0 > F.001,1,18 = 15.38 implies that the P-value is less than .001. So, H0: β1 = 0 is 

rejected and the model is judged useful. Also, 1.77 1.33041347s = = and 18,921.8295xxS = , so 
.04103377 4.2426

1.33041347 / 18,921.8295
t = =  and ( )22 4.2426 18.0t f= = = , showing the equivalence of the 

two tests. 
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40. We use the fact that 1̂β  is unbiased for β1.   

( ) ( ) ( )
11

0 1 1 0 1
0

1

0

0

1

ˆˆ )(ˆ

( )

i

i

i

i

ii i i

i i

E Y E xY x E Y xE E
n n n

x x
n n
x n n

n
x

β

β β β β β β β β

βββ
Σ − Σ Σ − Σ Σ − Σ

= = =  
 

Σ − Σ+ + −Σ Σ
= = = =

  

 
 
41.  

a. Under the regression model, 0 1( )i iE Y xβ β= +  and, hence, 0 1( )E Y xβ β= + . Therefore, 

1( ) ( )i iE Y Y x xβ− = − , and ( )1 2 2

( )( ) ( ) [ ]ˆ
( ) ( )

i i i i

i i

x x Y Y x x E Y Y
E E

x x x x
β

 − − − −
= = 

− −  

∑ ∑
∑ ∑

 

2
1

1 12 2

( ) ( ) ( )
( ) ( )

i i i

i i

x x x x x x
x x x x
β

β β
− − −

= = =
− −

∑ ∑
∑ ∑

. 

 
b. Here, we’ll use the fact that ( ()( ) ) ) ) 0)( ( (i i i i i i ix Y Y x Y Y x x Y Yx x x x= −− − − − −= −∑ ∑ ∑ ∑  = 

( )i ixx Y−∑ . With ( )2
ic x x= Σ − , 1

))(1 ) (ˆ ( i
i i i

xx Y Y Yxx
c c

β −
− −= =∑ ∑  ⇒ since the Yis are 

independent, ( )
( )

2 2 2
2 2

1 22

1ˆ ) )( (i
i i

i

xV V Y x
c x

x x
c c x

σ σβ σ = = = 
 

−
− =

−
∑ ∑ ∑

  or, equivalently, 

( )

2

22 /i ix x n
σ

Σ − Σ
, as desired. 

 
 

42. Let * indicate the rescaled test statistic (x to cx, y to dy). The revised t statistic is 
*

* *
1

ˆ
*

/ xx

t
s S

β
= .   

First, the new slope is 
*

*
1 1* 2 2

( )( )ˆ ˆ
)(

xy xyi i

xx i xx

cx dy dyS cdScx
S cx c S

d
cx c

β β−
−

Σ
= = = =

Σ
− .  

Second, the new residual sd is 
2 2 2*

* ) )SSE Sˆ ˆ( ( SE
2 2 2 2

i i i idy y dds d ds
n n n

y y
n

− −
= = = =

−
Σ

=
− −

Σ
−

.  

Third, * 2 2 2 2( () )xx i i xxS cx ccx x cx S= Σ = Σ =− −  . Putting all of the rescalings together, 

1 1 1
2

ˆ ˆ ˆ( / ) ( / )* ,
/ ( / ) / /xx xx xx

d c d ct t
ds d c s S sc S S

β β β
= = = =

⋅
where t is the original test statistic. 

 
 

43. The numerator of d is |1 – 2| = 1, and the denominator is 4 14 .831
324.40

= , so 1 1.20
.831

d = = .  The 

approximate power curve is for n – 2 df = 13, and β is read from Table A.17 as approximately .1. 
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Section 12.4 
 
44.  

a. The mean of the x data in Exercise 12.15 is 45.11x = .  Since x = 40 is closer to 45.11 than is x = 60, 
the quantity ( )240 x−  must be smaller than ( )260 x− .  Therefore, since these quantities are the only 
ones that are different in the two ŷs  values, the ŷs  value for x = 40 must necessarily be smaller than 

ŷs  for x = 60.  Said briefly, the closer x is to x , the smaller the value of ŷs . 
 
b. From the printout in Exercise 12.15, the error degrees of freedom is df = 25. Since t.025,25 = 2.060, the 

interval estimate when x = 40 is 7.592 ± 2.060(.179) = 7.592 ± .369 = (7.223, 7.961). We estimate, 
with a high degree of confidence, that the true average strength for all beams whose MoE is 40 GPa is 
between 7.223 MPa and 7.961 MPa. 

 
c. From the printout in Exercise 12.15, s = .8657, so the 95% prediction interval is 

( ) ( ) ( )2 22 2
ˆ.025,25ˆ 7.592 2.060 .8657 .179yy t s s± + = ± + = 7.592 ± 1.821 = (5.771, 9.413). Note that the 

prediction interval is almost 5 times as wide as the confidence interval. 
 
d. For two 95% intervals, the simultaneous confidence level is at least 100(1 – 2(.05)) = 90%. 

 
 
45.  

a. We wish to find a 90% CI for 125yµ ⋅ :  125ˆ 78.088y = , .05,18 1.734t = , and 

( )2

ˆ
125 140.8951 .1674

20 18,921.8295ys s
−

= + = . Putting it together, we get 78.088 ± 1.734(.1674) =             

(77.797, 78.378).  
 

b. We want a 90% PI. Only the standard error changes: ( )2

ˆ
125 140.89511 .6860

20 18,921.8295ys s
−

= + + = , so the PI is 

78.088 ± 1.734(.6860) = (76.898, 79.277).  
 
c. Because the x* of 115 is farther away from x  than the previous value, the term 2( )*x x−  will be 

larger, making the standard error larger, and thus the width of the interval is wider. 
 
d. We would be testing to see if the filtration rate were 125 kg-DS/m/h, would the average moisture 

content of the compressed pellets be less than 80%.  The test statistic is 78.088 80 11.42
.1674

t −
= = − , and 

with 18 df the P-value is P(T < –11.42) ≈ 0.00.  Hence, we reject H0.  There is significant evidence to 
prove that the true average moisture content when filtration rate is 125 is less than 80%. 

 
 
46. The accompanying Minitab output will be used throughout. 

a. From software, the least squares regression line is ŷ = –1.5846 + 2.58494x. The coefficient of 
determination is r2 = 83.73% or .8373. 

 
b. From software, a 95% CI for β1 is roughly (2.16, 3.01). We are 95% confident that a one-unit increase 

in tannin concentration is associated with an increase in expected perceived astringency between 2.16 
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units and 3.01 units. (Since a 1-unit increase is unrealistically large, it would make more sense to say a 
0.1-unit increase in x is associated with an increase between .216 and .301 in the expected value of y.) 

 
c. From software, a 95% CI for μY|.6, the mean perceived astringency when x = x* = .6, is roughly            

(–0.125, 0.058).  
 
d. From software, a 95% PI for Y|.6, a single astringency value when x = x* = .6, is roughly (–0.559, 

0.491). Notice the PI is much wider than the corresponding CI, since we are making a prediction for a 
single future value rather than an estimate for a mean. 

 
e. The hypotheses are H0: μY|.7 = 0 versus Ha: μY|.7 ≠ 0, where μY|.7 is the true mean astringency when x = 

x* = .7. Since this is a two-sided test, the simplest approach is to use the 95% CI for μY|.7 provided by 
software. That CI, as seen in the output is roughly (0.125, 0.325). In particular, since this interval does 
not include 0, we reject H0. There is evidence at the .05 level that the true mean astringency when 
tannin concentration equals .7 is something other than 0. 

 
Coefficients 
 
Term          Coef   SE Coef         T      P         95% CI 
Constant  -1.58460  0.133860  -11.8377  0.000  (-1.85798, -1.31122) 
x          2.58494  0.208042   12.4251  0.000  ( 2.16007,  3.00982) 
 
Summary of Model 
 
S = 0.253259     R-Sq = 83.73%        R-Sq(adj) = 83.19% 
 
Predicted Values for New Observations 
 
New Obs        Fit     SE Fit          95% CI                 95% PI 
      1  -0.033635  0.0447899  (-0.125108, 0.057838)  (-0.558885, 0.491615) 
      2   0.224859  0.0488238  ( 0.125148, 0.324571)  (-0.301888, 0.751606) 
 
Values of Predictors for New Observations 
 
New Obs    x 
      1  0.6 
      2  0.7 
 
 
47.  

a. ( )(40)ˆ 1.128 .82697 40 31.95y = − + = , .025,13 2.160t = ; a 95% PI for runoff is 

( ) ( ) ( )2 231.95 2.160 5.24 1.44 31.95 11.74 20.21,43.69± + = ± = .   
No, the resulting interval is very wide, therefore the available information is not very precise. 

 
b. 040,63,798 2 =Σ=Σ xx  which gives 4.586,20=xxS , which in turn gives 

( )

( ) 358.1
4.586,20

20.5350
15
124.5

2

ˆ 50
=

−
+=ys , so the PI for runoff when x = 50 is 

( ) ( ) ( )92.51,53.2869.1122.40358.124.5160.222.40 22 =±=+± .  The simultaneous prediction level 
for the two intervals is at least ( ) %90%21100 =− α . 
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48.  
a. Yes, the scatter plot shows a reasonably linear relationship between percent of total suspended solids 

removed (y) and amount removed (x). 
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b. Using software, ŷ = 52.63 – 0.2204x. These coefficients can also be obtained from the summary 

quantities provided. 
 

c. Using software, r2 = 
32.2969
43.2081

 = 70.1%. 

 

d. We wish to test H0: β1 = 0 v. Ha: β1 ≠ 0. Using software, t = 
0509.0
2204.0

)(
0

1

1 −
=

−
bs

b
 = –4.33, which has a 2-

sided P-value at 10–2 = 8 df of P(|T| > 4.33) ≈ 0.003 < .05. Hence, we reject H0 at the α = .05 level and 
conclude that a statistically useful linear relationship exists between x and y. 

 
e. The hypothesized slope is (2-unit decrease in mean y)/(10-unit increase in x) = –0.2. Specifically, we 

wish to test H0: β1 = –0.2 v. Ha: β1 < –0.2. The revised test statistic is t = 
0509.0
0204.0

)(
)2.0(

1

1 −
=

−−
bs

b
 =        

–0.4, and the corresponding P-value at 8 df is P(T < –0.4) = P(T > 0.4) = .350 from Table A.8. Hence, 
we fail to reject H0 at α = .05: the data do not provide significant evidence that the true average 
decrease in y associated with a 10kL increase in amount filtered exceeds 2%. 

 
f. Plug x = 100kL into software; the resulting interval estimate for μy.100 is (22.36, 38.82). We are 95% 

confident that the true average % of total suspended solids removed when 100,000 L are filtered is 
between 22.36% and 38.82%. Since x = 100 is nearer the average than x = 200, a CI for μy.200 will be 
wider. 

 
g. Again use software; the resulting PI for Y is (4.94, 56.24). We are 95% confident that the total 

suspended solids removed for one sample of 100,000 L filtered is between 4.94% and 56.24%.  This 
interval is very wide, much wider than the CI in part f. However, this PI is narrower than a PI at x = 
200, since x = 200 is farther from the mean than x = 100. 

 
 
49. 95% CI = (462.1, 597.7) ⇒ midpoint = 529.9; 306.28,025. =t  ⇒ ( ) ( )0 1

ˆ ˆ 15
ˆ529.9 2.306 597.7s
β β+

+ = ⇒  

( ) 402.29ˆ
15ˆˆ

10
=+ββs ⇒ 99% CI = ( ) ( )( ) ( ).005,8529.9 29.402 529.9 3.355 29.402 431.3,628.5t± = ± = . 
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50.  

a. Use software to find s(b1) = 0.065. A 95% CI for β1 is b1 ± t.025,11s(b1) = –0.433 ± 2.201(0.065) =        
(–0.576, –0.290). We want the effect of a .1-unit change in x, i.e. 0.1β1; the desired CI is just               
(–0.058, –0.029). We are 95% confident that the decrease in mean Fermi level position associated with 
a 0.1 increase in Ge concentration is between 0.029 and 0.058. 

 
b. Using software, a 95% CI for μy.0.50 is (0.4566, 0.5542). We are 95% confident that the mean Fermi 

position level when Ge concentration equals .50 is between 0.4566 and 0.5542. 
 
c. Again using software, a 95% PI for Y when x = 0.50 is (0.3359, 0.6749). We are 95% confident that the 

Fermi position level for a single observation to be made at 0.50 Ge concentration will be between 
0.3359 and 0.6749. As always, this prediction interval is markedly wider than the corresponding CI. 

 
d. To obtain simultaneous confidence of at least 97% for the three intervals, we compute each one using 

confidence level 99%.  Using software, the intervals are:  
for x = .3, (0.3450, 0.8389); 
for x = .5, (0.2662, 0.7446); 
for x = .7, (0.1807, 0.6570). 

 
 
51.  

a. 0.40 is closer to x . 
 
b. ( ) ( )0 1

ˆ ˆ0 1 /2, 2 0.40
ˆ ˆ ˆ0.40 nt sα β β
β β − +

+ ±  or ( )0.8104 2.101 0.0311± = (0.745, 0.876).  

 

c. ( ) ( )0 1

2 2
ˆ ˆ0 1 /2, 2 1.20

ˆ ˆ 1.20 nt s sα β β
β β − +

+ ± ⋅ +  or ( ) ( ) ( )2 20.2912 2.101 0.1049 0.0352 .059,.523± ⋅ + = . 

 
 
52.  

a. We wish to test H0: β1 = 0 v. Ha: β1 ≠ 0. The test statistic 10.6026 0 10.62
.9985

t −
= =  leads to a P-value of 

< .006 [2P(T > 4.0) from the 7 df row of Table A.8], and H0 is rejected since the P-value is smaller 
than any reasonable α.  The data suggest that this model does specify a useful relationship between 
chlorine flow and etch rate. 

 
b. A 95% confidence interval for β1:  10.6026 ± 2.365(.9985) = (8.24, 12.96).  We can be highly 

confident that when the flow rate is increased by 1 SCCM, the associated expected change in etch rate 
will be between 824 and 1296 A/min. 

 

c. A 95% CI for 3.0Yµ ⋅ :  ( )29 3.0 2.667138.256 2.365 2.546
9 58.50

 − ± +
 
 

= 38.526 ± 2.365(2.546)(.35805) =  

38.256 ± 2.156 = (36.100, 40.412), or 3610.0 to 4041.2 A/min. 
 

d. The 95% PI is ( )29 3.0 2.667138.256 2.365 2.546 1
9 58.50

 − ± + +
 
 

 = 38.526 ± 2.365(2.546)(1.06) =           

38.256 ± 6.398 = (31.859, 44.655), or 3185.9 to 4465.5 A/min. 
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e. The intervals for x* = 2.5 will be narrower than those above because 2.5 is closer to the mean than is 
3.0. 

 
f. No.  A value of 6.0 is not in the range of observed x values, therefore predicting at that point is 

meaningless. 
 
 
53. Choice a will be the smallest, with d being largest. The width of interval a is less than b and c (obviously), 

and b and c are both smaller than d.  Nothing can be said about the relationship between b and c. 
 
 
54.  

a. From the summaries provided, the slope is 1
137.60

36.463
ˆ

571
xy

xx

S
S

β = =  = 3.7736 and the intercept is 

0 0
ˆ ˆy xβ β−=  = (2310/14) – 3.7736(346.1/14) = 71.71. So, the equation of the least squares line is        

ŷ = 71.71 + 3.7736x. The slope indicates that a one-centimeter increase in ulna length is associated 
with an estimated 3.77 cm increase in (predicted mean) height. 

 
b. From the summaries provided, SSE = 1̂yy xyS Sβ− = 626.00 – 3.7736(137.60) = 106.75 and SST = Syy = 

626.00. Thus, r2 = SSE 106.751
SST 62 .0

1
6 0

= −−  = .829. That is, 82.9% of the total variation in subjects’ 

heights can be explained by a linear regression on ulna length. 
 
c. We wish to test H0: β1 = 0 v. Ha: β1 ≠ 0. Using the model utility test procedure, SSR = SST – SSE = 

519.25, from which SSR /1 519.25
SSE / ( 2) 106.75 /12

f
n

= =
−

 = 58.37. At df = (1, 12), f = 58.37 > F.001,1,12 = 

18.64 ⇒ P-value < .001. Hence, we strongly reject H0 and conclude that there is a statistically 
significant linear relationship between ulna length and height. 
 

d. The two 95% prediction intervals are (for x* = 23 cm and 25 cm, respectively): 
21 (23 24.72)71.71 3.7736(23) 2.179 2.98257 1

14 36.463571
−

+ +± ⋅ +  = (151.527, 165.481) and 

21 (25 24.72)71.71 3.7736(25) 2.179 2.98257 1
14 36.463571

−
+ +± ⋅ + = (159.318, 172.784) 

The t critical value is t.025,14–2 = 2.179 and the residual sd is s = 10SS 6.E
2

75
12n −

=  = 2.98257. 

 
e. As always, precision is debatable. Here, the 95% PIs for heights at ulna length = 23 cm and 25 cm 

overlap, suggesting that height can’t be predicted quite as precisely as we might like. 
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55. ( ) ( ) ( )
0 1 1 1 1

*1ˆ ˆ ˆ ˆ ˆ* ( ) * * i i
i i i

xx

x x x x Y
x Y x x Y x x Y d Y

n S
β β β β β

− −
+ = − + = + − = + =∑∑ ∑ , where 

( ) ( )*1
i i

xx

x x
d x x

n S
−

= + − .  Thus, since the Yis are independent, 

( ) ( )2 2 2
0 1

2 2
2

2

2 2
2

2

22

2 2
2 2

2

ˆ ˆ

( * )( ) ( * ) ( )1 2

( * ) ( ) ( * ) ( )1 2

( * )1 ( * ) 0 1 ( * )2

i i i

i i

xx

i i

xx

xx

xx

xx

x xxxx x

V x d V Y d

x x x x x x x x
n nS nS

x x x x x x x x
n

n nS S

x x Sx x x x
n nS S n S

β β σ

σ

σ

σ σ

+ = =

 − − − −
= + + 

 
 − − − −

= + + 
  
   −− ⋅ −

= + + = +   
   

∑ ∑

∑

∑ ∑   

 
56.  

a. Yes: a normal probability plot of yield load (not shown) is quite linear. 
 
b. From software, y = 498.2 and sy = 103.6. Hence, a 95% CI for μy is 498.2 ± t.025,14(103.6) =             

498.2 ± (2.145)(103.6) = (440.83, 555.57). We are 95% confident that the true average yield load is 
between 440.83 N and 555.57 N. 

 
c. Yes: the t-statistic and P-value associated with the hypotheses H0: β1 = 0 v. Ha: β1 ≠ 0 are t = 3.88 and 

P = 0.002, respectively. At any reasonable significance level, we reject H0 and conclude that a useful 
linear relationship exists between yield load and torque. 

 
d. Yes: prediction intervals based upon this data will be too wide to be useful. For example, a PI for Y 

when x = 2.0 is (345.4, 672.4), using software. This interval estimate includes the entire range of y 
values in the data. 

 

Section 12.5 
 
57. Most people acquire a license as soon as they become eligible.  If, for example, the minimum age for 

obtaining a license is 16, then the time since acquiring a license, y, is usually related to age by the equation 
y ≈ x – 16, which is the equation of a straight line.  In other words, the majority of people in a sample will 
have y values that closely follow the line y = x – 16. 

 
 
58. Summary values: n = 12, 44,615xΣ = , 2 170,355,425xΣ = , 3,860yΣ = , 2 1,284,450yΣ = , 

14,755,500xyΣ = ⇒ 4,480,572.92xxS = , 42,816.67yyS = , and 404,391.67xyS = .   

a. .9233xy

xx yy

S
r

S S
= = . 

 
b. The value of r does not depend on which of the two variables is labeled as the x variable.  Thus, had 

we let x = RBOT time and y = TOST time, the value of r would have remained the same. 
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c. The value of r does not depend on the unit of measure for either variable.  Thus, had we expressed 
RBOT time in hours instead of minutes, the value of r would have remained the same. 

 
d. Based on the linearity of the accompanying plots, both TOST time and ROBT time could plausibly 

have come from normally distributed populations. (This is not the same as verifying that the two 
variables have a bivariate normal distribution, but it’s a start.) 
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e. We wish to test H0: ρ = 0 v. Ha: ρ ≠ 0. The test statistic is
2 2

2 .9233 12 2
1 1 .9233

r nt
r
− −

= =
− −

 ≈ 7.6. At 10 df, 

the corresponding P-value is less than 2(.001) = .002. Thus, we reject H0 at level .05 and conclude that 
there is a statistically significant linear relationship between ROBT and TOST. 

 
59.  

a. ( )21950
251,970 40,720

18xxS = − = , ( )247.92
130.6074 3.033711

18yyS = − = , and 

( )( )1950 47.92
5530.92 339.586667

18xyS = − = , so 339.586667 .9662
40,720 3.033711

r = = .  There is a very 

strong, positive correlation between the two variables. 
 
b. Because the association between the variables is positive, the specimen with the larger shear force will 

tend to have a larger percent dry fiber weight.  
 
c. Changing the units of measurement on either (or both) variables will have no effect on the calculated 

value of r, because any change in units will affect both the numerator and denominator of r by exactly 
the same multiplicative constant. 

 
d. r2 = .96622 = .933, or 93.3%. 
 

e. We wish to test H0: ρ = 0 v. Ha: ρ > 0. The test statistic is
2 2

2 .9662 18 2
1 1 .9662

r nt
r
− −

= =
− −

= 14.94. This is 

“off the charts” at 16 df, so the one-tailed P-value is less than .001. So, H0 should be rejected: the data 
indicate a positive linear relationship between the two variables. 
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60.  
a. From software, the sample correlation coefficient is r = .722. 

 
b. The hypotheses are H0: ρ = 0 versus Ha: ρ ≠ 0. Assuming bivariate normality, the test statistic value is 

2 2

2 .722 14 2
1 1 .722

r nt
r
− −

= =
− −

= 3.61. At df = 14 – 2 = 12, the two-tailed P-value for this t test is roughly 

2(.002) = .004. Hence, we reject H0 at the .01 level and conclude that the population correlation 
coefficient between clockwise and counterclockwise rotation is not zero. We would not make the same 
conclusion at the .001 level, however, since P-value = .004 > .001. 

 
61.  

a.  We are testing H0: ρ = 0 v. Ha: ρ > 0. The correlation is 7377.704 .7482
36.9839 2,628,930.359

r = = , and 

the test statistic is 
2

.7482 12
1 .748

.9
2

3t =
−

≈ .  At 14 df, the P-value is roughly .001. Hence, we reject H0: 

there is evidence that a positive correlation exists between maximum lactate level and muscular 
endurance. 

 
b. We are looking for r2, the coefficient of determination:  r2 = (.7482)2 = .5598, or about 56%.  It is the 

same no matter which variable is the predictor. 
 
62.  

a. We are testing H0: ρ = 0 v. Ha: ρ > 0. The test statistic is 
2

.853 20 2
1 .853

t −
=

−
 ≈ 6.93. At 18 df, this is “off the 

charts,” so the one-tailed P-value is < .001. Hence, we strongly reject H0 and conclude that a statistically 
significant positive association exists between cation exchange capacity and specific surface area for this 
class of soils. 
 

b. In a, the null hypothesis would not be rejected if the test statistic were less than t.01,18 = 2.552, since such a 
test statistic would result in a P-value greater than .01 (remember, this is a one-sided test). That is, we fail 

to reject H0 with n = 20 iff 
2

20 2
1

r
r
−

−
< 2.552. Changing the < to = and solving for r, we get r ≈ .3524. So, 

we would fail to reject H0 if r < .3524 and reject H0 otherwise. [Note: Because this is a one-sided test, H0 
would not be rejected if r were any negative number, since a negative sample correlation would certainly 
not provide evidence in favor of Ha.] 
 

c. First, 1 1 1 1 .853ln ln
2 1 2 1 .853r

v r
=

+ +   =   − −   
 = 1.267. Next, a 95% CI for µV is .025 1.961.267

3 20 3
v z

n
± = ±

− −
 = 

(.792, 1.742). Finally, a 95% CI for ρ is 
2(.792) 2(1.742)

2(.792) 2(1.742)

1 1
1 1

,e e
e e

 
 + +

−



−  = (.659, .941). 
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63. With the aid of software, the sample correlation coefficient is r = .7729. To test H0: ρ = 0 v. Ha: ρ ≠  0, the 

test statistic is ( )
( )2

.7729 6 2

1 .7729
t

−
=

−
= 2.44. At 4 df, the 2-sided P-value is about 2(.035) = .07 (software gives 

a P-value of .072). Hence, we fail to reject H0: the data do not indicate that the population correlation 
coefficient differs from 0.  This result may seem surprising due to the relatively large size of r (.77), 
however, it can be attributed to a small sample size (n = 6). 

 
 
64.  

a. From the summary quantities provided, xy

xx yy

S
r

S S
= = .700. This indicates a moderate-to-strong, 

direct/positive association between UV transparency index and maximum prevalence of infection. 
 

b. This is asking for the coefficient of determination: r2 = .7002 = .49, or 49%.   
 
c. Interchanging the roles of x and y does not affect r, and so it does not affect r2, either. The answer is 

still 49%. 
 

d. Since ρ0 ≠ 0, we must use the z procedure here. First, 1 1 1 1 .7ln ln
2 1 2 1 .7

r
r

v + +   =   − − 
=

 
= 0.8673. Next, the 

test statistic is 
1 1

0 02 20.8673ln[(1 ) / (1 )] ln[(1 ) / (1 .5)].5
1 1/ 1 7 3/3

vz
n
ρ ρ− + − + −
−

= =
−

−  = 1.19. The corresponding 

upper-tailed P-value is P(Z ≥ 1.19) = 1 – Φ(1.19) = .1170. Since .1170 > .05, H0 cannot be rejected at 
the α = .05 level. We do not have sufficient evidence to conclude that the population correlation 
coefficient for these two variables exceeds .5. 

 
 
65.  

a. From the summary statistics provided, a point estimate for the population correlation coefficient ρ is r 

= 
2 2

)( )(

( ) ( )
i i

i i

x

x

x y y

x y y

− −

− −
∑
∑ ∑

= 44,185.87
(64,732.83)(130,566.96)

 = .4806. 

 
b. The hypotheses are H0: ρ = 0 versus Ha: ρ ≠ 0. Assuming bivariate normality, the test statistic value is 

2 2

2 .4806 15 2
1 1 .4806

r nt
r
− −

= =
− −

= 1.98. At df = 15 – 2 = 13, the two-tailed P-value for this t test is 2P(T13 

≥ 1.98) ≈ 2P(T13 ≥ 2.0) = 2(.033) = .066. Hence, we fail to reject H0 at the .01 level; there is not 
sufficient evidence to conclude that the population correlation coefficient between internal and external 
rotation velocity is not zero.  

 
c. If we tested H0: ρ = 0 versus Ha: ρ > 0, the one-sided P-value would be .033. We would still fail to 

reject H0 at the .01 level, lacking sufficient evidence to conclude a positive true correlation coefficient. 
However, for a one-sided test at the .05 level, we would reject H0 since P-value = .033 < .05. We have 
evidence at the .05 level that the true population correlation coefficient between internal and external 
rotation velocity is positive.  
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66.  
a. We used Minitab to calculate the ris:  r1 = 0.192, r2 = 0.382, and r3 = 0.183.  It appears that the lag 2 

correlation is best, but all of them are weak, based on the definitions given in the text. 
 
b. We reject H0 if  |ri| ≥ 2 / 100  = .2.  For all three lags specified in b, ri does not fall in the rejection 

region, so we cannot reject H0.  There is not evidence of theoretical autocorrelation at the first 3 lags. 
 
c. If we want an approximate .05 significance level for three simultaneous hypotheses, we would have to 

use smaller individual significance levels to control the global Type I error rate.  (This is similar to 
what Tukey’s method addresses in ANOVA.) Increasing the numerator from 2 would make it more 
difficult to reject H0, which is equivalent to a lower significance level (lower α). 

 
67.  

a. Because P-value = .00032 < α = .001, H0 should be rejected at this significance level. 
 
b. Not necessarily.  For such a large n, the test statistic t has approximately a standard normal distribution 

when H0: ρ = 0 is true, and a P-value of .00032 corresponds to z = ±3.60.  Solving ±
2

500 23.60
1

r
r
−

=
−

 

for r yields r = ± .159.  That is, with n = 500 we’d obtain this P-value with r = ± .159. Such an r value 
suggests only a weak linear relationship between x and y, one that would typically have little practical 
importance. 

 

c. The test statistic value would be
2

.022 10,000 2 2.20
1 .022

t −
= =

−
; since the test statistic is again 

approximately normal, the 2-sided P-value would be roughly 2[1 – Φ(2.20)] = .0278 < .05, so H0 is 
rejected in favor of Ha at the .05 significance level.  The value t = 2.20 is statistically significant — it 
cannot be attributed just to sampling variability in the case ρ = 0.  But with this enormous n, r = .022 
implies ρ ≈ .022, indicating an extremely weak relationship. 

Supplementary Exercises 
 
68.  

a. Clearly not: for example, the two observations with truss height = 14 ft have different sale prices 
(37.82 and 36.90). 

 
b. The scatter plot below suggests a strong, positive, linear relationship. 
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c. Using software, the least squares line is ŷ = 23.8 + 0.987x, where x = truss height and y = sale price. 
 
d. At x = 27, ŷ = 23.8 + 0.987(27) = $50.43 per square foot. The observed value at x = 27 is y = 48.07, 

and the corresponding residual is y – ŷ = 48.07 – 50.43 = –2.36. 
 

e. Using software, r2 = SSR/SST = 890.36/924.44 = 96.3%. 
 
 
69. Use available software for all calculations. 

a. We want a confidence interval for β1. From software, b1 = 0.987 and s(b1) = 0.047, so the 
corresponding 95% CI is 0.987 ± t.025,17(0.047) = 0.987 ± 2.110(0.047) = (0.888, 1.086). We are 95% 
confident that the true average change in sale price associated with a one-foot increase in truss height 
is between $0.89 per square foot and $1.09 per square foot. 

 
b. Using software, a 95% CI for μy.25 is (47.730, 49.172). We are 95% confident that the true average sale 

price for all warehouses with 25-foot truss height is between $47.73/ft2 and $49.17/ft2. 
 

c. Again using software, a 95% PI for Y when x = 25 is (45.378, 51.524). We are 95% confident that the 
sale price for a single warehouse with 25-foot truss height will be between $45.38/ft2 and $51.52/ft2. 

 
d. Since x = 25 is nearer the mean than x = 30, a PI at x = 30 would be wider. 

 
e. From software, r2 = SSR/SST = 890.36/924.44 = .963. Hence, r = 963. = .981. 

 
 
70. First, use software to get the least squares relation ŷ = 0.5817 + 0.049727x, where x = age and y = %DDA. 

From this, 1β̂ = 0.049727. Also from software, s = 0.244, x  = 29.73, and Sxx = 5390.2. Finally, if y* = 
2.01, then 2.01 = 0.5817 + 0.049727 x̂ , whence x̂ = 28.723. 
Therefore, an approximate 95% CI for X when y = y* = 2.01 is 

( )
2/12

9,025. 2.5390
73.29723.28

11
11

049727.0
244.0723.28











 −

++± t = )125.5(262.2723.28 ± = (17.130, 40.316). 

Since this interval straddles 22, we cannot say with confidence whether the individual was older or younger 
than 22 — ages both above and below 22 are plausible based on the data. 

 
71. Use software whenever possible. 

a. From software, the estimated coefficients are 1̂β  = 16.0593 and 0β̂  = 0.1925.  
 

b. Test H0: β1 = 0 versus Ha: β1 ≠ 0. From software, the test statistic is 16.0593 0
0.2965

t −
=  = 54.15; even at 

just 7 df, this is “off the charts” and the P-value is ≈ 0. Hence, we strongly reject H0 and conclude that 
a statistically significant relationship exists between the variables. 
 

c. From software or by direct computation, residual sd = s = .2626, x = .408 and Sxx = .784. When x = x* 
= .2, ŷ = 0.1925 + 16.0593(.2) = 3.404 with an estimated standard deviation of 

2 2

ˆ
1 ( * 1 (.2 .408).2626

9 .78
)

4Y
xxS
xxs s

n
− −

= + = +  = .107. The analogous calculations when x = x* = .4 

result in ŷ = 6.616 and Ŷs  = .088, confirming what’s claimed. Prediction error is larger when x = .2 
because .2 is farther from the sample mean of .408 than is x = .4. 
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d. A 95% CI for ·.4Yµ  is ˆ.025,9 2ˆ
Yy t s−±  = 6.616 ± 2.365(.088) = (6.41, 6.82).  

 
e. A 95% PI for Y when x = .4 is 2 2

ˆ.025,9 2ˆ
Yy st s− +± = (5.96, 7.27). 

 
72.  

a. df(SSE) = 6 = n – 2, so sample size = 8. 
 
b. ŷ = 326.76038 – 8.403964x.  When x = 35.5, ŷ = 28.64. 
 
c. The P-value for the model utility test is 0.0002 according to the output. The model utility test is 

statistically significant at the level .01. 
 

d. 2(sign of slope) 0.9134 0.9557r r= ⋅ = − = −  
 
e. First check to see if the value x = 40 falls within the range of x values used to generate the least-

squares regression equation.  If it does not, this equation should not be used.  Furthermore, for this 
particular model an x value of 40 yields a y value of –9.18mcM/L, which is an impossible value for y. 

 
73.  

a. From the output, r2 = .5073.  
 

b. 2(sign of slope) .5073r r= ⋅ = + = .7122. 
 
c. We test H0: β1 = 0 versus Ha: β1 ≠ 0.  The test statistic t = 3.93 gives P-value = .0013, which is < .01, 

the given level of significance, therefore we reject H0 and conclude that the model is useful. 
 
d. We use a 95% CI for 50Yµ ⋅ .   ŷ(50) = .787218 + .007570(50) = 1.165718; t.025,15 = 2.131;                     

s = “Root MSE” = .20308 ⇒ ( )
( ) ( )

2

2ˆ
17 50 42.331.20308 .051422

17 17 41,575 719.60Ys
−

= + =
−

.  The resulting 95% 

CI is 1.165718 ± 2.131(.051422) = 1.165718 ± .109581 = (1.056137, 1.275299).  
 
e. Our prediction is ŷ(30) = .787218 + .007570(30) = 1.0143, with a corresponding residual of y – ŷ =   

.80 – 1.0143 = –.2143. 
 
74.  

a. A scatterplot shows a reasonably strong, positive linear relationship between ΔCO and ΔNOy. The least 
squares line is ŷ = –.220 + .0436x. A test of H0: β1 = 0 versus Ha: β1 ≠ 0 in Minitab gives t = 12.72 and 
a P-value of ≈ 0. Hence, we have sufficient evidence to conclude that a statistically significant 
relationship exists between ΔCO and ΔNOy. 

 
b. The point prediction is ŷ = –.220 + .0436(400) = 17.228.  A 95% prediction interval produced by 

Minitab is (11.953, 22.503).  Since this interval is so wide, it does not appear that ΔNOy is accurately 
predicted. 

 
c. While the large ΔCO value appears to be “near” the least squares regression line, the value has 

extremely high “leverage.” The least squares line that is obtained when excluding the value is ŷ = 1.00 
+ .0346x, and the r2 value of 96% is reduced to 75% when the value is excluded.  The value of s with 
the value included is 2.024, and with the value excluded is 1.96.  So the large ΔCO value does appear 
to affect our analysis in a substantial way. 
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75.  

a. With y = stride rate and x = speed, we have 1 2

660.130 (205.4)(35.16) /11
3880.08 (205.4)

ˆ
/11

xy

xx

S
S

β −
= =

−
 = 3.597

44.702
 = 

0.080466 and 0 1
ˆ ˆy xβ β−=  = (35.16/11) – 0.080466(205.4)/11 = 1.694. So, the least squares line for 

predicting stride rate from speed is ŷ = 1.694 + 0.080466x. 
 

b. With y = speed and x = stride rate, we have 1 2

660.130 (35.16)(205.4) /11
112.681 (35.16)

ˆ
/11

xy

xx

S
S

β −
= =

−
 = 3.597

0.297
 = 

12.117 and 0 1
ˆ ˆy xβ β−=  =(205.4)/11 – 12.117(35.16/11)  = –20.058. So, the least squares line for 

predicting speed from stride rate is ŷ = –20.058 + 12.117x. 
 

c. The fastest way to find r2 from the available information is 2 2
1̂

xx

yy

Sr
S

β=  . For the first regression, this 

gives 2 2 44.702(0.080466)
0.297

r = ≈ .97. For the second regression, 2 2 0.297(12.117)
44.702

r = ≈ .97 as well. In 

fact, rounding error notwithstanding, these two r2 values should be exactly the same. 
 
 
76.  

a. Minitab output appears below. The equation of the estimated regression line is ŷ = –115.2 + 38.068x. A 
test of H0: β1 = 0 versus Ha: β1 ≠ 0 gives t = 3.84 and P-value = .002, suggesting we reject H0 and 
conclude that a statistically significant relationship exists between these variables. It is reasonable to 
use a linear regression model to predict fracture toughness from mode-mixity angle. 

 
The regression equation is 
y = - 115 + 38.1 x 
 
 
Predictor    Coef  SE Coef      T      P 
Constant   -115.2    226.7  -0.51  0.619 
x          38.068    9.924   3.84  0.002 

 
b. A formal test really isn’t necessary, since the sample slope is less than 50. But the formal hypothesis 

test is of H0: β1 ≤ 50 versus Ha: β1 > 50; the test statistic is 38.068 50
9.924

t −
=  = –1.2; and the upper-tailed 

P-value is P(T ≥ –1.2 when T ~ t14) = 1 – P(T ≥ –1.2 when T ~ t14) = 1 – .124 = .876. With such a large 
P-value we fail to reject H0 at any reasonable significance level. The data provide no evidence that the 
average change in fracture toughness associated with a one-degree increase in mode-mixity angle 
exceeds 50 N/m. 

 
c. Looking at the formula for the standard deviation of the slope, better precision (lower se) corresponds 

to greater variability in the x values, since Sxx is in the denominator. For the 16 actual x values from the 
study, Sxx = 148.9; for the 16 x values suggested in c, Sxx = 144. Since 144 < 148.9, the answer is no: 
using the 16 x values suggested in c would actually result in a larger standard error for the slope. 
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d. Minitab provides the 95% CIs and PIs below; the top row is for x = 18 degrees and the bottom row is 

for x = 22 degrees. Thus, we are 95% confident that the average fracture toughness at 18 degrees is 
between 451.9 N/m and 688.2 N/m, while at 22 degrees the average is between 656.0 N/m and 788.6 
N/m. The two intervals overlap slightly, owing to the small sample size and large amount of natural 
variation in fracture toughness. 
 
At a 95% prediction level, the fracture toughness of a single specimen at 18 degrees will fall between 
284.7 N/m and 855.4 N/m, while the fracture toughness of a single specimen at 22 degrees is predicted 
to fall between 454.2 N/m and 990.4 N/m. Not only do these two intervals overlap, they are also very 
wide — much wider than the associated CIs, which will always be the case. In particular, the available 
data suggest that we cannot predict fracture toughness very precisely based on mode-mixity angle. 

 
Predicted Values for New Observations 
 
New Obs    Fit  SE Fit      95% CI          95% PI 
      1  570.0    55.1  (451.9, 688.2)  (284.7, 855.4) 
      2  722.3    30.9  (656.0, 788.6)  (454.2, 990.4) 

 
 
77.  

a. Yes: the accompanying scatterplot suggests an extremely strong, positive, linear relationship between 
the amount of oil added to the wheat straw and the amount recovered. 
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b. Pieces of Minitab output appear below. From the output, r2 = 99.6% or .996. That is, 99.6% of the total 

variation in the amount of oil recovered in the wheat straw can be explained by a linear regression on 
the amount of oil added to it. 

 
Predictor     Coef  SE Coef      T      P 
Constant   -0.5234   0.1453  -3.60  0.003 
x          0.87825  0.01610  54.56  0.000 
 
S = 0.311816   R-Sq = 99.6%   R-Sq(adj) = 99.5% 
 
Predicted Values for New Observations 
 
New Obs     Fit  SE Fit       95% CI            95% PI 
      1  3.8678  0.0901  (3.6732, 4.0625)  (3.1666, 4.5690) 
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c. Refer to the preceding Minitab output. A test of H0: β1 = 0 versus Ha: β1 ≠ 0 returns a test statistic of     
t = 54.56 and a P-value of ≈ 0, from which we can strongly reject H0 and conclude that a statistically 
significant linear relationship exists between the variables. (No surprise, based on the scatterplot!) 

 
d. The last line of the preceding Minitab output comes from requesting predictions at x = 5.0 g. The 

resulting 95% PI is (3.1666, 4.5690). So, at a 95% prediction level, the amount of oil recovered from 
wheat straw when the amount added was 5.0 g will fall between 3.1666 g and 4.5690 g. 

 
e. A formal test of H0: ρ = 0 versus Ha: ρ ≠ 0 is completely equivalent to the t test for slope conducted in 

c. That is, the test statistic and P-value would once again be t = 54.56 and P ≈ 0, leading to the 
conclusion that ρ ≠ 0.  
 

78. Substituting x* = 0 into the variance formula for Ŷ gives 
0

2
2 2
ˆ

1

xx

x
n Sβ

σ σ +
 

= ⋅  
 

 , from which the estimated 

standard deviation of 0β̂  is 
0

2

ˆ
1

xx

s s
n

x
Sβ

= +  . For the data in Example 12.11, n = 10, s = 2661.33, Sxx = 

18,000, and x = 110 (most of these are provided in the example). Hence, the estimated standard deviation 

of 0β̂ is 
0

2

ˆ
12661.33

1
110

0 18,000
s
β
= + = 2338.675. A 95% CI for β0, the true y-intercept, is given by 

0
ˆ0 .025, 2

ˆ
n st

β
β −±  = 10,698.33 ± 2.306(2338.675) = (5305.35, 16,091.31).  

The interval is very wide because we only have n = 10 observations, there is a lot of variability in the 
response values (rupture load), and the value x = 0 is quite far from the x values within the data set 
(specifically, 110 away from the mean). 

79. Start with the alternative formula 2
0 1

ˆ ˆSSE y y xyβ β= Σ − Σ − Σ .  Substituting 1
0

ˆˆ y x
n
ββ Σ − Σ

= , 

( ) ( )2 2
2 2 21 1

1 1 1

1

ˆ ˆˆ ˆ ˆSSE

ˆ
yy xy

y yy x x y x yy y xy y xy y xy
n n n n n

S S

β ββ β β

β

 Σ ΣΣ − Σ Σ Σ Σ Σ = Σ − Σ − Σ = Σ − + − Σ = Σ − − Σ −      

= −

 

 
80. The value of the sample correlation coefficient using the squared y values would not necessarily be 

approximately 1.  If the y values are greater than 1, then the squared y values would differ from each other 
by more than the y values differ from one another.  Hence, the relationship between x and y2 would be less 
like a straight line, and the resulting value of the correlation coefficient would decrease. 

 
81.  

a. Recall that xy

xx yy

S
r

S S
= , 

2
2 (

1 1
)i xx

x
x Ss x
n n
−Σ

= =
− −

 , and similarly 2

1
yy

y

S
s

n
=

−
. Using these formulas, 

2

1 2

( 1)
( 1)

ˆ xx yyxy yy y y

xx xx xx x x

r SS S n s
r r r

S S S
S

s
s

n s
β

⋅ −
= = = ⋅ = ⋅ = ⋅

−
. Using the fact that 0 1

ˆ ˆy xβ β−= ,  the least 

squares equation becomes 0 1 1
ˆ ˆ ( (ˆˆ ) )y

x

x x
s

y y x y r x
s

xβ β β= + = + ⋅− −+ =  , as desired. 

b. In Exercise 64, r = .700. So, a specimen whose UV transparency index is 1 standard deviation below 
average is predicted to have a maximum prevalence of infection that is .7 standard deviations below 
average. 
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82. We need to show that 
1

1
2

ˆ

ˆ 2
1

r
s

n
rβ

β
=

−

−
, where

1̂
xx

ss
Sβ

= . We’ll rely on the SSE formula of Exercise 79 and 

the fact that SSE
2

s
n

=
−

. Combining these with the formula for 1̂β , we have 

1

1
2

ˆ 1 1

2 2ˆ /
ˆ ˆ /[ ] / ( 2)

/ // /
/

xy xx xy xxxy xx xy xx xy xx

xx yy xy xxyy xy yy xy

S n S nS S S
S S S SS S n S S

S SS S S
s ssβ

β

β β

   ⋅ − ⋅ −   = = = =
−− −

=
−

  

Divide numerator and denominator by yyS , and remember that /xy xx yySr SS= : 

1

1
2 2 2

ˆ

2 2ˆ 2
/

/

1

/

/ 1

xy xx yy xy xx yy

yy xy xx yy xy xx yy

S n S S n nS S S r
s S S SS S S S rβ

β    ⋅ − ÷ ⋅ − −   
− ÷ −

= =
−

⋅
= , completing the proof. 

 
83. Remember that SST = Syy and use Exercise 79 to write SSE = 1̂yy xyS Sβ− = 2 /yy xy xxS S S− . Then 

2 2
2 SSE SSE/

1 1
SST
SSExy xy xx yy

xx yy yy yy yy

S S S S
r

S SS S S
−

= = = = − = − . 

 
 
84.  

a. A scatterplot suggests the linear model is appropriate. 
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b. From the accompanying Minitab output, the least squares line is ŷ = 97.4986 + 0.075691x. A point 

prediction of removal efficiency when x = temperature = 10.50 is 97.4986 + 0.075691(10.50) = 98.29. 
For the observation (10.50, 98.41), the residual is 98.41 – 98.29 = 0.12. 

 
The regression equation is 
removal% = 97.5 + 0.0757 temp 
 
Predictor        Coef       StDev          T        P 
Constant      97.4986      0.0889    1096.17    0.000 
temp         0.075691    0.007046      10.74    0.000 
 
S = 0.1552      R-Sq = 79.4%     R-Sq(adj) = 78.7% 
 

c. From the Minitab output, s = .1552. 
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d. From the Minitab output, r2 = 79.4%. 
 
e. A 95% CI for β1, using the Minitab output and t.025,30 = 2.042, is .075691 ± 2.042(.007046)  = 

(.061303, .090079).  
 
f. Re-running the regression, the slope of the regression line is steeper.  The value of s is almost doubled 

(to 0.291), and the value of r2 drops correspondingly to 61.6%. 
 
 
85. Using Minitab, we create a scatterplot to see if a linear regression model is appropriate. 
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A linear model is reasonable; although it appears that the variance in y gets larger as x increases.  The 
Minitab output follows: 
 

The regression equation is 
blood glucose level = 3.70 + 0.0379 time 
 
Predictor        Coef       StDev          T        P 
Constant       3.6965      0.2159      17.12    0.000 
time         0.037895    0.006137       6.17    0.000 
 
S = 0.5525      R-Sq = 63.4%     R-Sq(adj) = 61.7% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      11.638      11.638     38.12    0.000 
Residual Error    22       6.716       0.305 
Total             23      18.353 

 
The coefficient of determination of 63.4% indicates that only a moderate percentage of the variation in y 
can be explained by the change in x.  A test of model utility indicates that time is a significant predictor of 
blood glucose level. (t = 6.17, P ≈ 0).  A point estimate for blood glucose level when time = 30 minutes is 
4.833%.  We would expect the average blood glucose level at 30 minutes to be between 4.599 and 5.067, 
with 95% confidence. 

 
86.  

a. Using the techniques from a previous chapter, we can perform a t test for the difference of two means 
based on paired data.  Minitab’s paired t test for equality of means gives t = 3.54, with a P-value of 
.002, which suggests that the average bf% reading for the two methods is not the same. 

 
b. Using linear regression to predict HW from BOD POD seems reasonable after looking at the 

scatterplot, below. 
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The least squares linear regression equation, as well as the test statistic and P-value for a model utility 
test, can be found in the Minitab output below.  We see that we do have significance, and the 
coefficient of determination shows that about 75% of the variation in HW can be explained by the 
variation in BOD. 
 

The regression equation is 
HW = 4.79 + 0.743 BOD 
 
Predictor        Coef       StDev          T        P 
Constant        4.788       1.215       3.94    0.001 
BOD            0.7432      0.1003       7.41    0.000 
 
S = 2.146       R-Sq = 75.3%     R-Sq(adj) = 73.9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      252.98      252.98     54.94    0.000 
Residual Error    18       82.89        4.60 
Total             19      335.87 

 
 

 
87. From the SAS output in Exercise 73, n1 = 17, SSE1 = 0.61860, 1̂β  = 0.007570; by direct computation,   

SSx1 = 11,114.6. The pooled estimated variance is 2 .61860 .51350
17 15 4

σ̂ +
=

+ −
= .040432, and the calculated test 

statistic for testing H0: β1 = γ1 is 
.007570 .006845

1 1.040432
11114.6 7152.5578

t −
=

+
 ≈ 0.24. At 28 df, the two-tailed P-value is roughly 2(.39) = .78. 

With such a large P-value, we do not reject H0 at any reasonable level (in particular, .78 > .05). The data do 
not provide evidence that the expected change in wear loss associated with a 1% increase in austentite 
content is different for the two types of abrasive — it is plausible that β1 = γ1. 
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CHAPTER 13 
 

Section 13.1 
 
1.  

a. 15x =  and ( )2 250ix x− =∑ , so the standard deviation of the residual ˆ
i iY Y−  is ( )215110 1

5 250
ix −

− −  

= 6.32, 8.37, 8.94, 8.37, and 6.32 for i = 1, 2, 3, 4, 5. 
 
b. Now  20x =  and  ( )2 1250ix x− =∑ , giving residual standard deviations 7.87, 8.49, 8.83, 8.94, and 

2.83 for i = 1, 2, 3, 4, 5. 
 
c. The deviation from the estimated line is likely to be much smaller for the observation made in the 

experiment of b for x = 50 than for the experiment of a when x = 25.  That is, the observation (50, Y) is 
more likely to fall close to the least squares line than is (25, Y). 

 
2. The pattern gives no cause for questioning the appropriateness of the simple linear regression model, and 

no observation appears unusual. 
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3.  

a. This plot indicates there are no outliers, the variance of ε is reasonably constant, and the ε are normally 
distributed.  A straight-line regression function is a reasonable choice for a model.   
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b. We need Sxx = ( ) ( )2
2 2817.9

415,914.85 18,886.8295
20ix x− = − =∑ .  Then each *

ie  can be calculated as 

follows: 
( )

*

2140.8951.4427 1
20 18,886.8295

i
i

i

ee
x

=
−

+ +

.  The table below shows the values: 

 
standardized 

residuals 
*/ iie e    

standardized 
residuals 

*/ iie e  
–0.31064 0.644053  0.6175 0.64218 
–0.30593 0.614697  0.09062 0.64802 

0.4791 0.578669  1.16776 0.565003 
1.2307 0.647714  –1.50205 0.646461 

–1.15021 0.648002  0.96313 0.648257 
0.34881 0.643706  0.019 0.643881 

–0.09872 0.633428  0.65644 0.584858 
–1.39034 0.640683  –2.1562 0.647182 

0.82185 0.640975  –0.79038 0.642113 
–0.15998 0.621857  1.73943 0.631795 

 
Notice that if  *

ie  ≈ ei / s, then */ iie e  ≈ s. All of the */ iie e ’s range between .57 and .65, which are close 
to s. 

 
c. This plot looks very much the same as the one in part a. 
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4.  

a. Yes: with R2 = 90.2% and a t-test P-value of 0.000, the output indicates a useful relationship between 
normalized energy and interocular pressure. 

 
b. The unusual curvature in the residual plot might indicate that a straight-line model is not appropriate 

for these two variables. (A scatterplot of y versus x also exhibits curvature.)         
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5.  
a. 97.7% of the variation in ice thickness can be explained by the linear relationship between it and 

elapsed time.  Based on this value, it is tempting to assume an approximately linear relationship; 
however, r2 does not measure the aptness of the linear model. 

 
b. The residual plot shows a curve in the data, suggesting a non-linear relationship exists.  One 

observation (5.5, –3.14) is extreme. 
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6. Yes, the outlying observation does seem to have a substantial effect. The slope without that observation is 

roughly 8.8, compared to 9.9 with the point included (more than a 10% increase!). Notice also that the 
estimated standard deviation of the slope is decreased substantially by the inclusion of this outlying value 
(from .47 to .38, almost a 20% decrease). The outlier gives a false impression about the quality of the fit of 
the least squares line. 
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7.  
a. From software and the data provided, the least squares line is ŷ = 84.4 – 290x. Also from software, the 

coefficient of determination is r2 = 77.6% or .776. 
 

Regression Analysis: y versus x  
 
The regression equation is 
y = 84.4 - 290 x 
 
Predictor     Coef  SE Coef      T      P 
Constant     84.38    11.64   7.25  0.000 
x          -289.79    43.12  -6.72  0.000 
 
S = 2.72669   R-Sq = 77.6%   R-Sq(adj) = 75.9% 

 
b. The accompanying scatterplot exhibits substantial curvature, which suggests that a straight-line model 

is not actually a good fit. 
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c. Fits, residuals, and standardized residuals were computed using software and the accompanying plot 
was created. The residual-versus-fit plot indicates very strong curvature but not a lack of constant 
variance. This implies that a linear model is inadequate, and a quadratic (parabolic) model relationship 
might be suitable for x and y. 
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8. The scatter plot below appears fairly linear, but at least one of the points (72.0,72.0) is potentially 

influential. 
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Minitab flags three potential problems: besides the possible influence of (72.0, 72.0), the points (57.5, 30.5) and 
(57.7, 57.0) have large standardized residuals (–2.31 and 2.18, respectively). These observations also give the 
appearance of non-constant variance (larger for middle values of x), but this is difficult to assess with so few data. 
Other Minitab output follows; the significance tests should be taken with caution. 
 
The regression equation is 
VO2 = - 51.4 + 1.66 HR 
 
Predictor     Coef  SE Coef      T      P 
Constant   -51.355    9.795  -5.24  0.000 
HR          1.6580   0.1869   8.87  0.000 
 
 
S = 6.11911   R-Sq = 84.9%   R-Sq(adj) = 83.8% 
 
Unusual Observations 
 
Obs    HR    VO2    Fit  SE Fit  Residual  St Resid 
 12  57.5  30.50  43.98    1.87    -13.48     -2.31R 
 13  57.7  57.00  44.31    1.89     12.69      2.18R 
 16  72.0  72.00  68.02    4.08      3.98      0.87 X 
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9. Both a scatter plot and residual plot (based on the simple linear regression model) for the first data set 

suggest that a simple linear regression model is reasonable, with no pattern or influential data points which 
would indicate that the model should be modified.  However, scatter plots for the other three data sets 
reveal difficulties. 

 

For data set #2, a quadratic function would clearly provide a much better fit.  For data set #3, the 
relationship is perfectly linear except one outlier, which has obviously greatly influenced the fit even 
though its x value is not unusually large or small. One might investigate this observation to see whether it 
was mistyped and/or it merits deletion.  For data set #4 it is clear that the slope of the least squares line has 
been determined entirely by the outlier, so this point is extremely influential. A linear model is completely 
inappropriate for data set #4. 

 
 
 
10.  

a. ( ) ( )0 1 1
ˆ ˆ ˆ

i i i i ie y x y y x xβ β β= − − = − − − , so ( ) ( )1 1
ˆ ˆ0 0 0i i ie y y x xβ βΣ = Σ − − Σ − = + ⋅ = . 

 
b. Since 0ieΣ =  always, the residuals cannot be independent.  There is clearly a linear relationship 

between the residuals.  If one ei is large positive, then at least one other ei would have to be negative to 
preserve 0ieΣ = .  This suggests a negative correlation between residuals (for fixed values of any n – 2, 
the other two obey a negative linear relationship). 
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c. ( ) ( )( ) ( )2
2

1 1
ˆ ˆi i i

i i i i i i i i i i

x y x
x e x y x y x x x x y x

n n
β β

 Σ Σ Σ 
Σ = Σ −Σ − Σ − = Σ − − Σ −  

    
but the first term in 

brackets is the numerator of 1β̂ , while the second term is the denominator of 1β̂ , so the difference 

becomes (numerator of 1β̂ ) – (numerator of 1β̂ ) = 0. 
 
d. The five *

ie ’s from Exercise 7 above are –1.55, .68, 1.25, –.05, and –1.06, which sum to –.73.  This 
sum differs too much from 0 to be explained by rounding.  In general it is not true that * 0ieΣ = . 

 
11.  

a. ( )
( ) ( )

( )1 2
1ˆˆ i j jj

i i i i i j j j
j jjj

x x x x Y
Y Y Y Y x x Y Y c Y

n x x
β

− Σ −
− = − − − = − − =

Σ −
∑ ∑ , where  

( )
( )

2

2
11 i

j

j

x x
c

n n x x

−
= − −

Σ −
 for j = i and  

( )( )
( )2

11 i j
j

j

x x x x
c

n x x

− −
= − −

Σ −
 for j i≠ .  Thus 

( ) ( )ˆ
i i j jV Y Y V c Y− = Σ  (since the Yj’s are independent) = 2 2

jcσ Σ  which, after some algebra, gives 

Equation (13.2). 
 

b. ( )( ) ( )2 ˆ ˆ ˆ ˆ( ) ( )i i i i i i iV Y V Y Y Y V Y V Y Yσ = = + − = + − , so 

( ) ( )
( )

2
2 2 2

2
1ˆ ˆ( ) i

i i i

j

x x
V Y Y V Y

n x x
σ σ σ

 − − = − = − +
 Σ −  

, which is exactly (13.2). 

 
c. As xi moves further from x , ( )2

ix x−  grows larger, so ˆ( )iV Y increases since ( )2
ix x−  has a positive 

sign in ˆ( )iV Y , but ( )ˆ
i iV Y Y−  decreases since ( )2

ix x−  has a negative sign in that expression. 

 
12.  

a. 34ieΣ = , which is not = 0, so these cannot be the residuals. 
 
b. Each xiei is positive (since xi and ei have the same sign) so 0i ix eΣ > , which contradicts the result of 

exercise 10c, so these cannot be the residuals for the given x values. 
 
 
13. The distribution of any particular standardized residual is also a t distribution with n – 2 d.f., since *

ie  is 

obtained by taking standard normal variable 
ˆ

ˆ

i i

i i

Y Y

Y Y
σ

−

−  and substituting the estimate of σ in the denominator 

(exactly as in the predicted value case).  With *
iE  denoting the ith standardized residual as a random 

variable, when n = 25 *
iE  has a t distribution with 23 df and .01,23 2.50t = , so P( *

iE outside (–2.50, 2.50)) = 

( ) ( )* *2.50 2.50 .01 .01 .02i iP E P E≥ + ≤ − = + = . 
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14.  

a. 1 2 3n n= =  (3 observations at 110 and 3 at 230), 3 4 4n n= = , 1. 202.0y = , 2. 149.0y = , 3. 110.5y = , 

4. 107.0y = , 2 288,013ijyΣΣ = , so 

( ) ( ) ( ) ( )2 2 2 2SSPE 288,013 3 202.0 3 149.0 4 110.5 4 107.0 4361 = − + + + =  .   

With 4480ixΣ = , 1923iyΣ = , 2 1,733,500ixΣ = , 2 288,013iyΣ =  (as above), and 544,730i ix yΣ = , 
SSE = 7241 so SSLF = 7241 – 4361=2880.   
With c – 2 = 2 and n – c = 10, MSLF = 2880/2 = 1440 and MSPE = 4361/10 = 436.1, so the computed 
test statistic value is f = 1440/436.1 = 3.30. Looking at df = (2, 10) in Table A.9, 2.92 < 3.30 < 4.10 ⇒ 
the P-value is between .10 and .05. In particular, since P-value > .05, we fail to reject H0. This formal 
test procedure does not suggest that a linear model is inappropriate. 

   
b. The scatter plot clearly reveals a curved pattern which suggests that a nonlinear model would be more 

reasonable and provide a better fit than a linear model. The contradiction between the scatterplot and 
the formal test can best be attributed to the small sample size (low power to detect a violation of H0). 

 

Section 13.2 
 
15.   

a. The scatterplot of y versus x below, left has a curved pattern.  A linear model would not be appropriate. 
 

b. The scatterplot of ln(y) versus ln(x) below, right exhibits a strong linear pattern.   
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c. The linear pattern in b above would indicate that a transformed regression using the natural log of both 

x and y would be appropriate.  The probabilistic model is then εα β ⋅= xy , the power function with an 
error term. 
 

d. A regression of ln(y) on ln(x) yields the equation ln(y) = 4.6384 – 1.04920 ln(x).  Using Minitab we 
can get a PI for y when x = 20 by first transforming the x value:  ln(20) = 2.996.  The computer 
generated 95% PI for ln(y) when ln(x) = 2.996 is (1.1188, 1.8712).  We must now take the antilog to 
return to the original units of y: (e1.1188, e1.8712) = (3.06, 6.50). 
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e. A computer generated residual analysis: 
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Looking at the residual vs. fits (bottom right), one standardized residual, corresponding to the third 
observation, is a bit large.  There are only two positive standardized residuals, but two others are 
essentially 0.  The patterns in the residual plot and the normal probability plot (upper left) are 
marginally acceptable. 

 
16. A scatter plot of log(time) versus load shows a reasonably linear pattern. From the computer output below, 

r2 = 57.7%, so the linear model does an adequate job. With y = log(time) and x = load, the regression 
equation is ŷ = 18.305 – 0.21421x; in particular, 1β̂ = – 0.21421. A 95% PI for log(time) when x = 80.0 is 
given below as (–0.923, 3.258). Transform to create a PI on the original scale: (10–0.923, 103.258) =        
(0.119, 1811.34). That is, for a rope at 80% of breaking load, we’re 95% confident the failure time will be 
between 0.119 hours and 1811.34 hours. (The PI is not very precise, due to small sample size and relatively 
large s.) 

 
Regression Analysis: log(Time) versus Load  
 
The regression equation is 
log(Time) = 18.3 - 0.214 Load 
 
Predictor      Coef  SE Coef      T      P 
Constant     18.305    3.836   4.77  0.000 
Load       -0.21421  0.04582  -4.68  0.000 
 
S = 0.946479   R-Sq = 57.7%   R-Sq(adj) = 55.1% 
 
Predicted Values for New Observations 
 
New 
Obs    Fit  SE Fit      95% CI           95% PI 
  1  1.168   0.277  (0.580, 1.755)  (-0.923, 3.258) 
 
Values of Predictors for New Observations 
 
New 
Obs  Load 
  1  80.0 
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17.  

a. 501.15=′Σ ix , 352.13=′Σ iy , 228.202 =′Σ ix , 572.162 =′Σ iy , 109.18=′′Σ ii yx , from which 

254.1ˆ
1 =β  and 468.ˆ

0 −=β  so 254.1ˆˆ
1 == ββ  and 626.ˆ 468. == −eα . 

 
b. The plots give strong support to this choice of model; in addition, r2 = .960 for the transformed data. 
 
c. SSE = .11536 (computer printout), s = .1024, and the estimated sd of 1β̂  is .0775, so 

4
31.25 1.02

.0775
t −
= = − , for a P-value at 11 df of P(T ≤ –1.02) ≈ .16.  Since .16 > .05, H0 cannot be 

rejected in favor of Ha. 
 
d. The claim that 5.25 2 ⋅⋅ = YY µµ  is equivalent to ( )ββ αα 5.225 =⋅ , or that β = 1.  Thus we wish test     

H0: β = 1versus Ha: β ≠ 1.  With 1.25 1
.0775

t −
= = 3.28, the 2-sided P-value at 11 df is roughly 2(.004) = 

.008. Since .008 ≤ .01, H0 is rejected at level .01. 
 

 
18. A scatterplot suggests making a logarithmic transformation of x.  We transform ln( )x x′ = , so 

ln( )y xα β= + .  This transformation yields a linear regression equation .0197 .00128y x′= −  or 
.0197 .00128ln( )y x= − .  Minitab output follows: 

 
The regression equation is 
y = 0.0197 - 0.00128 ln(x) 
 
Predictor        Coef       StDev          T        P 
Constant     0.019709    0.002633       7.49    0.000 
ln(x)      -0.0012805   0.0003126      -4.10    0.001 
 
S = 0.002668    R-Sq = 49.7%     R-Sq(adj) = 46.7% 
 
Predicted Values for New Observations 
 
New Obs       Fit    SE Fit         95% CI                95% PI 
      1  0.008803  0.000621  (0.007494, 0.010112)  (0.003023, 0.014582) 
 
 
Values of Predictors for New Observations 
 
New Obs  ln(x) 
      1   8.52 

 
The model is useful, based on a t test, with a P-value of .001.  But r2 = 49.7, so only 49.7% of the variation 
in y can be explained by its relationship with ln(x).  [This is slightly better than a regression of ln(y) on 
ln(x) corresponding to a power model, which we also examined.] 
 
To estimate y5000, we need ln(x) = ln(5000) = 8.51719. A point estimate for y5000 is .0197 – .00128(8.51719) 
= .0088.  A 95% prediction interval for y5000 is (0.003023, 0.014582). 
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19.  

a. No, there is definite curvature in the plot. 
 
b. With x = temperature and y = lifetime, a linear relationship between ln(lifetime) and 1/temperature 

implies a model y = exp(α + β/x + ε). Let x′ = 1/temperature and y′ = ln(lifetime). Plotting y′ vs. x′ gives 
a plot which has a pronounced linear appearance (and, in fact, r2 = .954 for the straight line fit). 

 
c. .082273ix′Σ = , 123.64iy′Σ = , 2 .00037813ix′Σ = , 2 879.88iy′Σ = , .57295iix y′ ′Σ = , from which 

ˆ 3735.4485β =  and ˆ 10.2045α = −  (values read from computer output).  With x = 220, .004545x′ =  
so ˆ 10.2045 3735.4485(.004545) 6.7748y′ = − + =  and thus ˆˆ 875.50yy e ′= = . 

 
d. For the transformed data, SSE = 1.39857, and 1 2 3 6,n n n= = =  1. 8.44695y′ = , 2. 6.83157y′ = , 

3. 5.32891y′ = , from which SSPE = 1.36594, SSLF = .02993, .02993 /1 .33
1.36594 /15

f = = .  Comparing this 

to the F distribution with df = (1, 15), it is clear that H0 cannot be rejected. 
 
 
20. After examining a scatter plot and a residual plot for each of the five suggested models as well as for y vs. 

x, it appears that the power model y xβα ε= ⋅ , i.e.,  ln( )y y′ = vs. ln( )x x′ = , provided the best fit.  The 
transformation seemed to remove most of the curvature from the scatter plot, the residual plot appeared 
quite random, * 1.65ie′ <  for every i, there was no indication of any influential observations, and r2 = .785 
for the transformed data. 

 
 
21.  

a. The accompanying scatterplot, left, shows a very strong non-linear association between the variables. 
The corresponding residual plot would look somewhat like a downward-facing parabola. 
 

b. The right scatterplot shows y versus 1/x and exhibits a much more linear pattern. We’d anticipate an r2 
value very near 1 based on the plot. (In fact, r2 = .998.) 
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c. With the aid of software, a 95% PI for y when x = 100, aka x′ = 1/x = 1/100 = .01, can be generated. 

Using Minitab, the 95% PI is (83.89, 87.33). That is, at a 95% prediction level, the nitrogen extraction 
percentage for a single run when leaching time equals 100 h is between 83.89 and 87.33. 
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22.  

a. 1 x
y

α β= + , so with 1y
y

′ = , y xα β′ = + .  The corresponding probabilistic model is  1 x
Y

α β ε= + + . 

 

b. 1 1 xe
y

α β+− = , so 1ln 1 x
y

α β
 

− = + 
 

.  Thus with 1ln 1y
y

 ′ = − 
 

, y xα β′ = + .  The corresponding 

probabilistic model is Y xα β ε′ ′= + + , or equivalently 1
1 xY

eα β ε+=
+ ⋅

 where eεε ′= . 

 
c. ( ) ( )( )ln ln lnxy e y xα β α β+= = = + .  Thus with ( )( )ln ln ,y y y xα β′ ′= = + .  The probabilistic model 

is Y xα β ε′ ′= + + , or equivalently, 
xeY e

α β

ε
+

= ⋅  where εε ′= e . 
 
d. This function cannot be linearized. 

 
23. ( )2 2 2 2( ) ( )x x xV Y V e e V eβ β βα ε α ε α τ = ⋅ = ⋅ = ⋅   where we have set ( ) 2V ε τ= .  If β > 0, this is an 

increasing function of x so we expect more spread in y for large x than for small x, while the situation is 
reversed if β < 0.  It is important to realize that a scatter plot of data generated from this model will not 
spread out uniformly about the exponential regression function throughout the range of x values; the spread 
will only be uniform on the transformed scale.  Similar results hold for the multiplicative power model. 

 
24. The hypotheses are H0: β1 = 0 versus Ha: β1 ≠ 0, where β1 represents the model coefficient on x in the 

logistic regression model. The value of the test statistic is z = .73, with a corresponding P-value of .463.  
Since the P-value is greater than any reasonable significance level, we do not reject H0.  There is 
insufficient evidence to claim that age has a significant impact on the presence of kyphosis. 

 
25. First, the test statistic for the hypotheses H0: β1 = 0 versus Ha: β1 ≠ 0 is z = –4.58 with a corresponding P-

value of .000, suggesting noise level has a highly statistically significant relationship with people’s 
perception of the acceptability of the work environment. The negative value indicates that the likelihood of 
finding work environment acceptable decreases as the noise level increases (not surprisingly). We estimate 
that a 1 dBA increase in noise level decreases the odds of finding the work environment acceptable by a 
multiplicative factor of .70 (95% CI: .60 to .81).    

The accompanying plot shows
0 1

0 1

23.2 .359

23.2 .359ˆ
1 1
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e e
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π

+ −

+ −= =
+ +

. Notice that the estimate probability of finding 

work environment acceptable decreases as noise level, x, increases. 
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Section 13.3 
 
26.  

a. The accompanying scatterplot suggests that a quadratic model is indeed a good fit to this sample data. 
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b. From the output, the coefficient of multiple determination is R2 = 93.8%. That is, 93.8% of observed 
variation in bulk density can be attributed to the model relationship. 

 
c. From software, a 95% CI for μY when x = 13.7 (and x2 = 13.72) is (471.475, 512.760). 

 
d. We want a 99% confidence interval, but the output gives us a 95% confidence interval of (452.71, 

529.48), which can be rewritten as 491.10 ± 38.38. At df = 6 – 3 = 3, t.025,3 = 3.182 ⇒ 

ˆ 14
38.38 12.06
3.182ys ⋅ = = . Finally, t.005,3 = 5.841, so the 99% PI is 

( ) ( )491.10 5.841 12.06 491.10 70.45 420.65,561.55± = ± = . 
 
e. To test the utility of the quadratic term, the hypotheses are H0: β2 = 0 versus Ha: β2 ≠ 0.  The test 

statistic is t = –3.81, with a corresponding P-value of .032. At the .05 level, we reject H0: quadratic 
term appears to be useful in this model. 

 
27.  

a. A scatter plot of the data indicated a quadratic regression model might be appropriate. 
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b. ( ) ( ) ;88.5267679.16875.15482.84ˆ 2 =+−=y  residual = 12.88.5253ˆ66 =−=− yy  
 

c. ( )
88.586

2
2 =

Σ
−Σ=

n
y

ySST i
i , so 895.

88.586
77.6112 =−=R . 

 
d. None of the standardized residuals exceeds 2 in magnitude, suggesting none of the observations are 

outliers. The ordered z percentiles needed for the normal probability plot are –1.53, –.89, –.49, –.16, 
.16, .49, .89, and 1.53. The normal probability plot below does not exhibit any troublesome features. 
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e. 88.52ˆ 6 =⋅Yµ  (from b) and 571.25,025.3,025. ==− tt n , so the CI is 
( )( ) ( )22.57,54.4834.488.5269.1571.288.52 =±=± . 

 

f. SSE = 61.77, so 35.12
5
77.612 ==s  and s{pred} ( ) 90.369.135.12 2 =+ .   The PI is 

( )( ) ( )91.62,85.4203.1088.5290.3571.288.52 =±=± . 
 

 
 
28.  

a. ( ) ( ) ( ) ( ) 41.397501780.7536684.30937.11375ˆ75ˆˆˆ 22
21075 =−+−=++=⋅ βββµY  

 
b. ( ) ( ) 93.2460ˆ60ˆˆˆ 2

210 =++= βββy . 
 
c. ( )( )2 2

0 1 2
ˆ ˆ ˆSSE 8386.43 113.0937 210.70i i i i i iy y x y x yβ β β= Σ − Σ − Σ − Σ = − −  

( )( ) ( )( ) 82.217780,419,10178.002,173684.3 =−−− , 61.72
3

82.217
3

2 ==
−

=
n
SSEs , s = 8.52 

 

d. 779.
35.987
82.21712 =−=R  

 

e. The computed value of the test statistic is 88.7
00226.
01780.

−=
−

=t . Even at 3 df, the P-value is much less 

than .01. Hence, we reject H0. The quadratic term is statistically significant in this model. 
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29.  

a. The table below displays the y-values, fits, and residuals. From this, SSE = ∑ e2 = 16.8,  
s2 = SSE/(n – 3) = 4.2, and s = 2.05. 

  
y ŷ   e = y – ŷ  

81 82.1342 –1.13420 
83 80.7771 2.22292 
79 79.8502 –0.85022 
75 72.8583 2.14174 
70 72.1567 –2.15670 
43 43.6398 –0.63985 
22 21.5837 0.41630 

 
b. SST = ∑ (y – y )2 = ∑ (y – 64.71)2 = 3233.4, so R2 = 1 – SSE/SST = 1 – 16.8/3233.4 = .995, or 99.5%.  

995% of the variation in free–flow can be explained by the quadratic regression relationship with 
viscosity. 

 
c. We want to test the hypotheses H0: β2 = 0 v. Ha: β2 ≠ 0. Assuming all inference assumptions are met, 

the relevant t statistic is 
0004835.

00031662. −−
=t = –6.55. At n – 3 = 4 df, the corresponding P-value is   

2P(T > 6.55) <  .004. At any reasonable significance level, we would reject H0 and conclude that the 
quadratic predictor indeed belongs in the regression model. 

 
d. Two intervals with at least 95% simultaneous confidence requires individual confidence equal to  

100% – 5%/2 = 97.5%. To use the t-table, round up to 98%: t.01,4 = 3.747. The two confidence intervals 
are 2.1885 ± 3.747(.4050) = (.671, 3.706) for β1 and –.0031662 ± 3.747(.0004835) =                            
(–.00498, –.00135) for β2. [In fact, we are at least 96% confident β1 and β2 lie in these intervals.] 

 
e. Plug into the regression equation to get ŷ = 72.858. Then a 95% CI for μY.400 is 72.858 ± 3.747(1.198) 

= (69.531, 76.186). For the PI, s{pred} = 2
ˆ

2
Yss + = 2)198.1(2.4 + = 2.374, so a 95% PI for Y when 

x = 400 is 72.858 ± 3.747(2.374) = (66.271, 79.446). 
 
 
30.  

a. R2 = 98.1% or .981.  This means 98.1% of the observed variation in yield strength can be attributed to 
the model relationship. 

 
b. To test the utility of the quadratic term, the hypotheses are H0: β2 = 0 versus Ha: β2 ≠ 0.  The test 

statistic is t = –8.29, with a corresponding P-value of .014. At the .05 level, we reject H0: quadratic 
term appears to be useful in this model. 

 
c. From software, a 95% CI for μY · 100 is (123.848, 144.297). Alternatively, using the information 

provided, a 95% CI is ŷ ± t.025,2sŶ  = 134.07 ± 4.303(2.38) = (123.8, 144.3). 
 
d. From software, a 95% PI for Y·100 is (116.069, 152.076). Alternatively, using the information 

provided, a 95% PI is ŷ ± t.025,2
2 2

Ŷs s+  = 134.07 ± 4.303 2 2(3.444) (2.38)+ = (116.06, 152.08). The 
value s = 3.444 comes from the output provided, where s is 3.44398. As always, the PI for a single 
future value of Y when x = 100 is much wider that the CI for the true mean value of Y when x = 100. 
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31.  
a. R2 = 98.0% or .980. This means 98.0% of the observed variation in energy output can be attributed to 

the model relationship. 
 

b. For a quadratic model, adjusted R2 = 
2( 1) (24 1)(.780) 2

1 24 1 2
n kR

n k
− − −

=
− − − −

− = .759, or 75.9%. (A more 

precise answer, from software, is 75.95%.) The adjusted R2 value for the cubic model is 97.7%, as seen 
in the output. This suggests that the cubic term greatly improves the model: the cost of adding an extra 
parameter is more than compensated for by the improved fit. 
 

c. To test the utility of the cubic term, the hypotheses are H0: β3 = 0 versus H0: β3 ≠ 0. From the Minitab 
output, the test statistic is t = 14.18 with a P-value of .000. We strongly reject H0 and conclude that the 
cubic term is a statistically significant predictor of energy output, even in the presence of the lower 
terms. 

 
d. Plug x = 30 into the cubic estimated model equation to get ŷ = 6.44. From software, a 95% CI for μY·30 

is (6.31, 6.57). Alternatively, ŷ ± t.025,20sŶ = 6.44 ± 2.086(.0611) also gives  (6.31, 6.57). Next, a 95% PI 
for Y·30 is (6.06, 6.81) from software. Or, using the information provided,  ŷ ± t.025,20

2 2
Ŷs s+ =      

6.44 ± 2.086 2 2(.1684) (.0611)+  also gives (6.06, 6.81). The value of s comes from the Minitab 
output, where s = .168354. 

 
e. The null hypothesis states that the true mean energy output when the temperature difference is 35°K is 

equal to 5W; the alternative hypothesis says this isn’t true.  
Plug x = 35 into the cubic regression equation to get ŷ = 4.709. Then the test statistic is 

4.709 5
.0523

5.6t −
= ≈ − , and the two-tailed P-value at df = 20 is approximately 2(.000) = .000. Hence, we 

strongly reject H0 (in particular, .000 < .05) and conclude that μY·35 ≠ 5. 
 
Alternatively, software or direct calculation provides a 95% CI for μY·35 of (4.60, 4.82). Since this CI 
does not include 5, we can reject H0 at the .05 level. 

 
 
32.  

a. ( ) ( ) ( )2 3.3463 1.2933 2.3964 2.3968x x x x x x− − + − − − . 
 
b. From a, the coefficient of x3 is  –2.3968, so 3

ˆ 2.3968β = − .  There will be a contribution to x2 both from 

( )22.3964 4.3456x −  and from ( )32.3968 4.3456x− − .  Expanding these and adding yields 33.6430 as 

the coefficient of x2, so 2
ˆ 33.6430β = .  

 
c. 4.5 .1544x x x x′= ⇒ = − = ; substituting into a yields ŷ = .1949.  
  

d. 2.3968 .97
2.4590

t −
= = − , which is not significant (H0: β3 = 0 cannot be rejected), so the inclusion of the 

cubic term is not justified. 
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33.  

a. 20x =  and sx = 10.8012 so 20
10.8012

xx −′ = .  For x = 20, x′ = 0, and 0
ˆˆ .9671y β ∗= = .  For x = 25, x′ = 

.4629, so ( ) ( ) ( )2 3ˆ .9671 .0502 .4629 .0176 .4629 .0062 .4629 .9407y = − − + = . 
 

b. 
2 320 20 20ˆ .9671 .0502 .0176 .0062

10.8012 10.8012 10.8012
x x xy − − −     = − − +     

     
 

= 3 2.00000492 .000446058 .007290688 .96034944x x x− + + . 
 

c. .0062 2.00
.0031

t = = . At df = n – 4 = 3, the P-value is 2(.070) = .140 > .05. Therefore, we cannot reject H0; 

the cubic term should be deleted. 
 
d. ( )2ˆSSE i iy y= Σ −  and the ˆiy ’s are the same from the standardized as from the unstandardized model, 

so SSE, SST, and R2 will be identical for the two models. 
 
e. 2 6.355538iyΣ = , 6.664iyΣ = , so SST = .011410.  For the quadratic model, R2 = .987, and for the 

cubic model, R2 = .994. The two R2 values are very close, suggesting intuitively that the cubic term is 
relatively unimportant. 

 
 
34.  

a. 49.9231x =  and sx = 41.3652 so for x = 50, 49.9231 .001859
41.3652

xx −′ = =  and 

( ) ( )2
50ˆ .8733 .3255 .001859 .0448 .001859 .873Yµ ⋅ = − + = . 

 
b. SST = 1.456923 and SSE = .117521, so R2 = .919. 
 

c. 
249.9231 49.9231.8733 .3255 .0448

41.3652 41.3652
x x− −   − +   

   
=  21.3314 .01048314 .00002618x x− + . 

 

d. 2
2 2

ˆˆ
xs
ββ

∗

=  so the estimated sd of 2β̂  is the estimated sd of 2β̂
∗  multiplied by 2

1

xs
: 

( )
2

ˆ 2

1.0319 .0000186
41.3652

s
β

 = = 
 

. 

 
e. The test statistic is t = .0448/.0319 = 1.40; at 9 df, the P-value is 2(.098) = .196 > .05, so the quadratic 

term should not be retained. The result is the same in both cases. 
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35. ( )2 2

0 1 2ln( ) ln lnY Y x x x xα β γ ε β β β ε′ ′= = + + + = + + +  where ( )lnε ε′ = , ( )0 lnβ α= , 1β β= , and 

2β γ= .  That is, we should fit a quadratic to (x, ln(y)).  The resulting estimated quadratic (from computer 

output) is 22.00397 .1799 .0022x x+ − , so ˆ .1799,β =  ˆ .0022γ = − , and 2.0397ˆ 7.6883eα = = .  [The ln(y)’s 
are 3.6136, 4.2499, 4.6977, 5.1773, and 5.4189, and the summary quantities can then be computed as 
before.] 

 
 

Section 13.4 
 
36.  

a. Holding age, time, and heart rate constant, maximum oxygen uptake will increase by .01 L/min for 
each 1 kg increase in weight.  Similarly, holding weight, age, and heart rate constant, the maximum 
oxygen uptake decreases by .13 L/min with every 1 minute increase in the time necessary to walk 1 
mile. 

 
b. ( ) ( ) ( ) ( )76,20,12,140ˆ 5.0 .01 76 .05 20 .13 12 .01 140 1.8y = + − − − =  L/min. 
 
c. ŷ = 1.8 from b, and σ = .4, so, assuming Y follows a normal distribution, 

( ) ( )1.00 1.8 2.6 1.81.00 2.60 2.0 2.0 .9544
.4 .4

P Y P Z P Z− − < < = < < = − < < = 
 

. 

 
 
37.  

a. The mean value of y when x1 = 50 and x2 = 3 is ( ) ( )50,3 .800 .060 50 .900 3 4.9yµ ⋅ = − + + =  hours. 
 
b. When the number of deliveries (x2) is held fixed, then average change in travel time associated with a 

one-mile (i.e., one unit) increase in distance traveled (x1) is .060 hours.  Similarly, when distance 
traveled (x1) is held fixed, then the average change in travel time associated with on extra delivery (i.e., 
a one unit increase in x2) is .900 hours. 

 
c. Under the assumption that Y follows a normal distribution, the mean and standard deviation of this 

distribution are 4.9 (because x1 = 50 and x2 = 3) and σ = .5 (since the standard deviation is assumed to 
be constant regardless of the values of x1 and x2).  Therefore, 

( ) ( )6 4.96 2.20 .9861
.5

P Y P Z P Z− ≤ = ≤ = ≤ = 
 

.  That is, in the long run, about 98.6% of all days 

will result in a travel time of at most 6 hours. 
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38.   

a. mean life ( ) ( ) ( )( )125 7.75 40 .0950 1100 .009 40 1100 143.50= + + − =  
 
b. First, the mean life when x1 = 30 is equal to ( ) ( )2 2 2125 7.75 30 .0950 .009 30 357.50 .175x x x+ + − = − .  

So when the load increases by 1, the mean life decreases by .175.  Second, the mean life when x1 =40 
is equal to ( ) ( )2 2125 7.75 40 .0950 .009 40 435 .265x x xa+ + − = − .  So when the load increases by 1, 
the mean life decreases by .265. 

 
 
39.  

a. For x1 = 2, x2 = 8 (remember the units of x2 are in 1000s), and x3 = 1 (since the outlet has a drive-up 
window), the average sales are ( ) ( ) ( )ˆ 10.00 1.2 2 6.8 8 15.3 1 77.3y = − + + =  (i.e., $77,300). 

 
b. For x1 = 3, x2 = 5, and x3 = 0 the average sales are ( ) ( ) ( )ˆ 10.00 1.2 3 6.8 5 15.3 0 40.4y = − + + =  (i.e., 

$40,400). 
 
c. When the number of competing outlets (x1) and the number of people within a 1-mile radius (x2) 

remain fixed, the expected sales will increase by $15,300 when an outlet has a drive-up window. 
 
 
40.  

a. For testing H0: 1 2 3 0β β β= = =  vs. Ha: at least one among 31 2 ,,β β β  is not zero, the test statistic is 
2

2

.91/ / 3
( ) / ( 11 (1 .91) 1) / ( 1 3 1)

R
R

kF
n k

= =
− − − −− −

= 23.6. Comparing this to the F distribution with df = 

(3,7), 23.6 > 18.77 ⇒ P-value < .001 < .01 ⇒ we reject H0 at the .01 level.  We conclude that at least 
one β is non-zero; i.e., the three predictors as a set are useful for predicting power output (y). 

 
b. For fixed values of x2 (excess post-exercise oxygen consumption) and x3 (immediate posttest lactate), a 

one-centimeter increase in arm girth is associated with an estimated increase in predicted/mean power 
output of 14.06 W. 

 
c. ŷ = –408.20 + 14.06(36) + .76(120) – 3.64(10.0) = 152.76 W. 
 
d. Our point estimate for 36,120,10.0Yµ ⋅  is the same value as in c, 152.76 W. 
 
e. What’s being described is the coefficient on x3. Our point estimate of β3 is 3β̂ = –3.64. 

 
 
41.  

a. R2 = .834 means that 83.4% of the total variation in cone cell packing density (y) can be explained by a 
linear regression on eccentricity (x1) and axial length (x2). For H0: β1 = β2 = 0 vs. Ha: at least one β ≠ 0, 

the test statistic is F = 
2

2

/ .834 / 2
(1 ) / ( 1) (1 .834) / (192 2 1)

R k
R n k

=
− − − − − −

≈ 475, and the associated P-value 

at df = (2, 189) is essentially 0. Hence, H0 is rejected and the model is judged useful. 
 

b. ŷ = 35821.792 – 6294.729(1) – 348.037(25) = 20,826.138 cells/mm2. 
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c. For a fixed axial length (x2), a 1-mm increase in eccentricity is associated with an estimated decrease in 
mean/predicted cell density of 6294.729 cells/mm2. 
 

d. The error df = n – k – 1 = 192 – 3 = 189, so the critical CI value is t.025,189 ≈ z.025 = 1.96. A 95% CI for 
β1 is –6294.729 ± 1.96(203.702) = (–6694.020, –5895.438). 
 

e. The test statistic is 348.037 0
134.350

t − −
=  = –2.59; at 189 df, the 2-tailed P-value is roughly 2P(T ≤ –2.59) 

≈ 2Φ(–2.59) = 2(.0048) ≈ .01. Since .01 < .05, we reject H0. After adjusting for the effect of 
eccentricity (x1), there is a statistically significant relationship between axial length (x2) and cell 
density (y). Therefore, we should retain x2 in the model.  

 
42.  

a. To test H0: β1 = β2 = 0 vs. Ha: at least one β ≠ 0, the test statistic is MSR 319.31
MSE

f = =  (from output).  

The associated P-value is ≈ 0, so at any reasonable level of significance, H0 should be rejected.  There 
does appear to be a useful linear relationship between temperature difference and at least one of the 
two predictors. 

 
b. The degrees of freedom for SSE = n – (k + 1) = 9 – (2 + 1) = 6 (which you could simply read in the DF 

column of the printout), and t.025,6 = 2.447, so the desired confidence interval is 
( )( )3.000 2.447 .4321 3.000 1.0573± = ± , or about (1.943, 4.057).  Holding furnace temperature fixed, 

we estimate that the average change in temperature difference on the die surface will be somewhere 
between 1.943 and 4.057. 

 
c. When x1 = 1300 and x2 = 7, the estimated average temperature difference is 

( ) ( )1 2ˆ 199.56 .2100 3.000 199.56 .2100 1300 3.000 7 94.44y x x= − + + = − + + = .  The desired confidence 

interval is then ( )( )94.44 2.447 .353 94.44 .864± = ± , or (93.58, 95.30). 
 
d. From the printout, s = 1.058, so the prediction interval is 

( ) ( ) ( ) ( )2 294.44 2.447 1.058 .353 94.44 2.729 91.71,97.17± + = ± = . 
 
43.  

a. ( ) ( )ˆ 185.49 45.97 2.6 0.3015 250 0.0888(2.6)(250) 48.313y = − − + = .  
 
b. No, it is not legitimate to interpret β1 in this way.  It is not possible to increase the cobalt content, x1, 

while keeping the interaction predictor, x3, fixed.  When x1 changes, so does x3, since x3 = x1x2. 
 
c. Yes, there appears to be a useful linear relationship between y and the predictors.   We determine this 

by observing that the P-value corresponding to the model utility test is < .0001 (F test statistic = 
18.924). 

 
d. We wish to test H0: β3 = 0 vs. Ha: β3 ≠ 0.  The test statistic is t = 3.496, with a corresponding P-value of 

.0030.  Since the P-value is < α = .01, we reject H0 and conclude that the interaction predictor does 
provide useful information about y. 

 
e. A 95% CI for the mean value of surface area under the stated circumstances requires the following 

quantities: ( ) ( ) ( )( )ˆ 185.49 45.97 2 0.3015 500 0.0888 2 500 31.598y = − − + = .  Next, .025,16 2.120t = , so 

the 95% confidence interval is ( )( ) ( )31.598 2.120 4.69 31.598 9.9428 21.6552,41.5408 .± = ± =  
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44.  
a. Since the total degrees of freedom equals 80, there were 81 observations. 
 
b. R2 = 88.6%, so 88.6% of the observed variation in surface roughness can be explained by the model 

relationship with vibration amplitude, depth of cut, feed rate, and cutting speed as explanatory 
variables. 

 
c. This is a model utility test. The hypotheses are H0: β1 = β2 = β3 = β4 = 0 versus Ha: at least one βi ≠ 0. 

From the output, the F-statistic is f = 148.35 with a P-value of .000. Thus, we strongly reject H0 and 
conclude that at least one of the explanatory variables is a significant predictor of surface roughness. 

 
d. 18.2602 is the coefficient on “f” (i.e., feed rate). After adjusting for the effects of vibration amplitude, 

depth of cut, and cutting speed, a 1 mm/rev increase in the feed rate is associated with an estimated 
increase of 18.2602 μm in expected surface roughness. 

 
e. Yes: the P-value for variable “v” (cutting speed, aka velocity) is 0.480 > .10, so that variable is not a 

statistically significant predictor of surface roughness at the .10 level in the presence of the other three 
explanatory variables. None of the other variables have P-values above .10 (although “a,” vibration 
amplitude, is close). 

 
f. Substitute the prescribed values into the regression equation to get ŷ = 3.7015. Using the information 

provided, a 95% CI for the mean response at those settings is given by  
ŷ ± t.025,76sŶ ≈ 3.7015 ± 1.99(.1178) = (3.47, 3.94). Next, a 95% PI for a single roughness measurement 

at those settings is ŷ ± t.025,76
2 2

Ŷs s+ ≈ 3.7015 ± 1.99 2 2(.822) (.1178)+  = (2.05, 5.35).  As always, 
the PI is much wider than the CI. 

 
 
45.  

a. The hypotheses are H0: β1 = β2 = β3 = β4 = 0 vs. Ha: at least one βi ≠ 0.  The test statistic is f = 

)1/()1(
/

2

2

−−− knR
kR  = 

20/)946.1(
4/946.

−
 = 87.6 ≥ F.001,4,20 = 7.10 (the smallest available F-value from 

Table A.9), so the P-value is < .001 and we can reject H0 at any significance level.  We conclude that 
at least one of the four predictor variables appears to provide useful information about tenacity. 

 

b. The adjusted R2 value is 
( ) ( ) ( )21

1
11

1
11 R

kn
n

SST
SSE

kn
n

−
+−

−
−=








+−
−

−  ( ) 935.946.1
20
241 =−−= , which does 

not differ much from R2 = .946. 
 
c. The estimated average tenacity when x1 = 16.5, x2 = 50, x3 = 3, and x4 = 5 is  

( ) ( ) ( ) ( ) 091.105219.3256.50113.5.16082.121.6ˆ =−++−=y .  For a 99% CI, 845.220,005. =t , so 

the interval is ( ) ( )087.11,095.9350.845.2091.10 =± .  Therefore, when the four predictors are as 
specified in this problem, the true average tenacity is estimated to be between 9.095 and 11.087. 
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46.  

a. Yes, there does appear to be a useful linear relationship between repair time and the two model 
predictors.  We determine this through a model utility test H0: β1 = β2 = 0 vs. Ha: at least one β ≠ 0.  

The calculated statistic is SSR / 10.63 / 2
SSE / ( 1) 20.9 / 9

kf
n k

= =
− −

 = 22.91. At df = (2, 9), 22.91 > 16.39 ⇒    

P-value < .001 < .05 ⇒ we reject H0 and conclude that at least one of the two predictor variables is 
useful. 

 
b. We test H0: β2 = 0 v. Ha: β2 ≠ 0. The test statistic is t = 1.250/.312 = 4.01; at 9 df, the two-tailed P-

value is less than 2(.002) = .004. Hence, we reject H0 and conclude that the “type of repair” variable 
does provide useful information about repair time, given that the “elapsed time since the last service” 
variable remains in the model. 
 

c. A 95% confidence interval for β2 is: 1.250 ± 2.262(.312) = (.5443, 1.9557).  We estimate, with a high 
degree of confidence, that when an electrical repair is required the repair time will be between .54 and 
1.96 hours longer than when a mechanical repair is required, while the “elapsed time” predictor 
remains fixed. 

 
d. ( ) ( ) 6.41250.16400.950.ˆ =++=y , 23222.2 == MSEs , and 25.39,005. =t , so the  99% PI is 

( ) ( ) ( ) 69.16.4192.23222.25.36.4 2 ±=+±  ( )29.6,91.2= .  The prediction interval is quite wide, 
suggesting a variable estimate for repair time under these conditions. 

 
 
47.  

a. For a 1% increase in the percentage plastics, we would expect a 28.9 kcal/kg increase in energy 
content.  Also, for a 1% increase in the moisture, we would expect a 37.4 kcal/kg decrease in energy 
content.  Both of these assume we have accounted for the linear effects of the other three variables. 

 
b. The appropriate hypotheses are H0: 1 2 3 4 0β β β β= = = =  vs. Ha: at least one β ≠ 0.  The value of the F-

test statistic is 167.71, with a corresponding P-value that is ≈ 0.  So, we reject H0 and conclude that at 
least one of the four predictors is useful in predicting energy content, using a linear model. 

 
c. H0: β3 = 0 v. Ha: β3 ≠ 0.  The value of the t test statistic is t = 2.24, with a corresponding P-value of 

.034, which is less than the significance level of .05. So we can reject H0 and conclude that percentage 
garbage provides useful information about energy consumption, given that the other three predictors 
remain in the model. 

 
d. ( ) ( ) ( ) ( )ˆ 2244.9 28.925 20 7.644 25 4.297 40 37.354 45 1505.5y = + + + − = , and t.025,25 = 2.060.   So a 

95% CI for the true average energy content under these circumstances is 
( )( ) ( )1.1531,8.147969.255.150547.12060.25.1505 =±=± .  Because the interval is reasonably narrow, 

we would conclude that the mean energy content has been precisely estimated.  
 
e. A 95% prediction interval for the energy content of a waste sample having the specified characteristics 

is  ( ) ( ) ( )2 21505.5 2.060 31.48 12.47± +  ( )2.1575,7.143575.695.1505 =±= . 
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48.  

a. We wish to test H0: 1 2 9... 0β β β= = = = vs. Ha: at least one β ≠ 0. The model utility test statistic value 

is 
2

2

.938 / 9
(

/
) / ( 1)1 (1 .938) / (15 9 1)

kf
R n

R
k

= =
− − − −− −

 = 8.41. At df = (9, 5), 4.77 < 8.41 < 10.16 ⇒ the P-

value is between .05 and .01. In particular, P-value > .01 ⇒ we fail to reject H0 at the .01 level. At this 
significance level, the model does not appear to specify a statistically useful relationship (though it 
does at α = .05). 

 
b. ˆ 21.967yµ = , /2, ( 1) .025,5 2.571n kt tα − + = = , so the CI is ( )( ) ( )21.967 2.571 1.248 18.76,25.18± = . 
 

c. 2 SSE 23.379 4.6758
( 1) 5

s
n k

= = =
− +

, and the CI is ( ) ( ) ( )221.967 2.571 4.6758 1.248 15.55,28.39± + = . 

 
d. Now we’re testing H0: 4 5 9... 0β β β= = = = vs. Ha: at least one of 4 5 9, ,...,β β β  ≠ 0.  The required sums 

of squares are SSEk = 23.379, SSEl = 203.82, from which (203.82 23.379) / (9 3)
23.379 / 5

f − −
= = 6.43. Using 

Table A.9 with df = (6, 5), 4.95 < 6.43 < 10.67 ⇒ the P-value is between .05 and .01. In particular, P-
value < .05 ⇒ we reject H0 at the .05 level and conclude that at least one of the second-order predictors 
appears useful. 

 
49.  

a. Use the ANOVA table in the output to test H0: β1 = β2 = β3 = 0 vs. Ha: at least one βj ≠ 0. With f = 
17.31 and P-value = 0.000, so we reject H0 at any reasonable significance level and conclude that the 
model is useful. 

 
b. Use the t test information associated with x3 to test H0: β3 = 0 vs. Ha: β3 ≠ 0. With t = 3.96 and P-value 

= .002 < .05, we reject H0 at the .05 level and conclude that the interaction term should be retained.  
 

c. The predicted value of y when x1 = 3 and x2 = 6 is ŷ = 17.279 – 6.368(3) – 3.658(6) + 1.7067(3)(6) = 
6.946. With error df = 11, t.025,11 = 2.201, and the CI is 6.946 ± 2.201(.555) = (5.73, 8.17). 

 
d. Our point prediction remains the same, but the SE is now 2 2 2 2

ˆ 1.72225 .555Yss = ++ = 1.809. The 
resulting 95% PI is 6.946 ± 2.201(1.809) = (2.97, 10.93). 
 

50. Using the notation in the model, we wish to test H0: β3 = β4 = 0 vs. Ha: β3 ≠ 0 or β4 ≠ 0. The full model has  
k = 5 and SSEk = 28.947, while the reduced model (i.e., when H0 is true) has l = 3 predictors and, from the 

Minitab output, SSEl = 32.627. Thus, the test statistic value is (32.627 28.947) / (5 3)
28.947 / [15 (5 1)]

f − −
=

− +
 = 0.572. This 

is a very small test statistic value; in particular, at df = (2, 9), 0.572 < 3.01 ⇒ P-value > .10, and so we fail 
to reject H0 at any reasonable significance level. With x1, x2, and the interaction term already in the model, 
the two quadratic terms add no statistically significant predictive ability. The quadratic terms should be 
removed from the model. 
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51.  
a. Associated with x3 = drilling depth are the test statistic t = 0.30 and P-value = .777, so we certainly do 

not reject H0: β3 = 0 at any reasonably significance level. Thus, we should remove x3 from the model. 
 

b. To test H0: β1 = β2 = 0 vs. Ha: at least one β ≠ 0, use R2: 
2

2

.836 / 2
(1 (1 .836)

/
) / ( / (91) 2 1)

k
k

Rf
R n − −−

= =
− − −

 

= 15.29; at df = (2, 6), 10.92 < 15.29 < 27.00 ⇒ the P-value is between .001 and .01. (Software gives 
.004.) In particular, P-value ≤ .05 ⇒ reject H0 at the α = .05 level: the model based on x1 and x2 is 
useful in predicting y. 

 
c. With error df = 6, t.025,6 = 2.447, and from the Minitab output we can construct a 95% CI for β1:  

–0.006767 ± 2.447(0.002055) = (–0.01180, –0.00174). Hence, after adjusting for feed rate (x2), we are 
95% confident that the true change in mean surface roughness associated with a 1rpm increase in 
spindle speed is between –.01180 µm and –.00174 µm. 

 
d. The point estimate is ŷ = 0.365 –0.006767(400) + 45.67(.125) = 3.367. With the standard error 

provided, the 95% CI for µY is 3.367 ± 2.447(.180) = (2.93, 3.81). 
 

e. A normal probability plot of the e* values is quite straight, supporting the assumption of normally 
distributed errors. Also, plots of the e* values against x1 and x2 show no discernible pattern, supporting 
the assumptions of linearity and equal variance. Together, these validate the regression model. 

 
52.  

a. The complete 2nd order model obviously provides a better fit, so there is a need to account for 
interaction between the three predictors. 

 
b. A 95% CI for μY when x1 = x2 = 30 and x3 = 10 is ( ) ( ).66573 2.120 .01785 .6279,.7036± = . 

 
 
53. Some possible questions might be: 

(1) Is this model useful in predicting deposition of poly-aromatic hydrocarbons? A test of model utility 
gives us an F = 84.39, with a P-value of 0.000.  Thus, the model is useful. 

(2) Is x1 a significant predictor of y in the presence of x2?  A test of H0: β1 = 0 v. Ha: β1 ≠ 0 gives us a t = 
6.98 with a P-value of 0.000, so this predictor is significant. 

(3) A similar question, and solution for testing x2 as a predictor yields a similar conclusion: with a P-value 
of 0.046, we would accept this predictor as significant if our significance level were anything larger 
than 0.046. 

 
 
54.  

a. The variable “supplier” has three categories, so we need two indicator variables to code “supplier,” 
such as 

2

1 supplier 1
0 otherwise

x 
= 


  3

1 supplier 2
0 otherwise

x 
= 


 

Similarly, the variable “lubrication” has three categories, so we need two more indicator variables, 
such as  

4

1 lubricant #1
0 otherwise

x 
= 


  5

1 lubricant #2
0 otherwise

x 
= 

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b. This is a model utility test. The hypotheses are H0: β1 = β2 = β3 = β4 = β5 = 0 versus Ha: at least one βi ≠ 
0. From the output, the F-statistic is f = 20.67 with a P-value of .000. Thus, we strongly reject H0 and 
conclude that at least one of the explanatory variables is a significant predictor of springback. 

 
c. First, find ŷ for those settings: ŷ = 21.5322 – 0.0033680(1000) – 1.7181(1) – 1.4840(0) – 0.3036(0) + 

0.8931(0) = 21.5322 – 0.0033680(1000) – 1.7181 = 16.4461. The error df is 30, so a 95% PI for a new 

value at these settings is ŷ ± t.025,30
2 2

Ŷs s+ = 16.4461 ± 2.042 2 2(1.1 (.8413) 524)+ = (13.80, 19.09).  
 
d. The coefficient of determination in the absence of the lubrication indicators is 

2 SSE 48.4261 1
SST 186.980

R = − = − = .741 or 74.1%. That’s a negligible drop in R2, so we suspect keeping the 

indicator variables for lubrication regimen is not worthwhile.  
 

More formally, we can test H0: β4 = β5 = 0 versus Ha: β4 ≠ 0 or β5 ≠ 0. The “partial F test” statistic is 
SSE ) / ( )
/ [ ( 1)]

(SSE (48.426 42.065) / (5 3)
SSE 42.065 / 30

l k

k

k l
n k

f −
−

− −−
=

+
= = 2.27. This test statistic is less than F.10,2,30 = 

2.49, so the P-value is > .10 and we fail to reject H0 at the .10 level. The data does not suggest that 
lubrication regimen needs to be included so long as BHP and supplier are retained in the model. 
 

e. R2 has certainly increased, but that will always happen with more predictors. Let’s test the null 
hypothesis that the interaction terms are not statistically significant contributors to the model. The 
larger model contributes 4 additional variables: x1x2, x1x3, x1x4, x1x5. So, the larger model has 30 – 4 = 

26 error df, and the “partial F test” statistic is SSE ) / df
/ [error d

(SSE (42.065 28.21
f ]

6) / 4
SSE 28.216 / 26

l k

k

f − ∆ −
= = = 3.19 

> F.05,4,26 = 2.74. Therefore, the P-value is less than .05 and we should reject H0 at the .05 level and 
conclude that the interaction terms, as a group, do contribute significantly to the regression model. 

 

Section 13.5 
 
55.  

a. To test H0: β1 = β2 = β3 = 0 vs. Ha: at least one β ≠ 0, use R2: 
2

2

.706 / 3
(

/
) / ( 1)1 (1 .706) / (12 3 1)

kf
R n

R
k

= =
− − − −− −

 = 6.40. At df = (3, 8), 4.06 < 6.40 < 7.59 ⇒ the P-

value is between .05 and .01. In particular, P-value < .05 ⇒ reject H0 at the .05 level. We conclude that 
the given model is statistically useful for predicting tool productivity. 

 
b. No: the large P-value (.510) associated with ln(x3) implies that we should not reject H0: β3 = 0, and 

hence we need not retain ln(x3) in the model that already includes ln(x1).   
 
c. Part of the Minitab output from regression ln(y) on ln(x1) appears below. The estimated regression 

equation is ln(y) = 3.55 + 0.844 ln(x1). As for utility, t = 4.69 and P-value = .001 imply that we should 
reject H0: β1 = 0 — the stated model is useful. 
 
The regression equation is 
ln(y) = 3.55 + 0.844 ln(x1) 
 
Predictor     Coef  SE Coef       T      P 
Constant   3.55493  0.01336  266.06  0.000 
ln(x1)      0.8439   0.1799    4.69  0.001 
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d. The residual plot shows pronounced curvature, rather than “random scatter.” This suggests that the 
functional form of the relationship might not be correctly modeled — that is, ln(y) might have a non-
linear relationship with ln(x1). [Obviously, one should investigate this further, rather than blindly 
continuing with the given model!] 
 

0.100.050.00-0.05

2

1

0

-1

-2

ln(x1)

St
an

da
rd

ize
d 

Re
si

du
al

Residuals Versus ln(x1)
(response is ln(y))

 
 

e. First, for the model utility test of ln(x1) and ln2(x1) as predictors, we again rely on R2: 
2

2

.819 / 2
(

/
) / ( 1)1 (1 .819) / (12 2 1)

kf
R n

R
k

= =
− − − −− −

= 20.36. Since this is greater than F.001,2,9 = 16.39, the 

P-value is < .001 and we strongly reject the null hypothesis of no model utility (i.e., the utility of this 
model is confirmed). Notice also the P-value associated with ln2(x1) is .031, indicating that this 
“quadratic” term adds to the model. 
Next, notice that when x1 = 1, ln(x1) = 0 [and ln2(x1) = 02 = 0], so we’re really looking at the 
information associated with the intercept. Using that plus the critical value t.025,9 = 2.262, a 95% PI for 

the response, ln(Y), when x1 = 1 is 3.5189 ± 2.262 2 2.0361358 .0178+  = (3.4277, 3.6099). Lastly, to 
create a 95% PI for Y itself, exponentiate the endpoints: at the 95% prediction level, a new value of Y 
when x1 = 1 will fall in the interval (e3.4277, e3.6099) = (30.81, 36.97).  

 
 
56.  

a. To test H0: 1 5... 0β β= = =  versus Ha: at least one β ≠ 0, use R2: 
2

2

.769 / 5
(

/
) / ( 1)1 (1 .769) / (20 5 1)

kf
R n

R
k

= =
− − − −− −

= 9.32; at df = (5, 14), 9.32 > 7.92 ⇒ the P-value is    

< .001, so H0 is rejected.  Wood specific gravity appears to be linearly related to at least one of the five 
carriers (i.e., this set of predictors). 

 

b. For the full model, ( )2 19 .769 5
.687

14aR
−

= = , while for the reduced model, ( )2 19 .769 4
.707

15aR
−

= = . 

 
c. From a, ( )( )SSE 1 .769 .0196610 .004542k = − = , and ( )( )SSE 1 .654 .0196610 .006803l = − = , so 

.002261/ 3 2.32
.004542 /14

f = = . At df = (3, 14), 2.32 < 2.52 ⇒ P-value > .10 ⇒ we fail to reject the null 

hypothesis that 1 2 4 0β β β= = =  at the .05 level. These three variables can be removed from the 
model. 
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d. 3
3

52.540 .4665
5.4447

xx −′ = = −  and 5
5

89.195 .2196
3.6660

xx −′ = = , so 

( )( ) ( )( )ˆ .5255 .0236 .4665 .0097 .2196 .5386y = − − + = . 
 
e. Error df = 20 – (2 + 1) = 17 for the two-variable model, t.025,17 = 2.110, and so the desired CI is  

( ) ( ).0236 2.110 .0046 .0333, .0139− ± = − − . 
 

f. 3 552.540 89.195.5255 .0236 .0097
5.4447 3.6660

x xy − −   = − +   
   

, so 3β̂  for the unstandardized model is 

.0236 .004334
5.447
−

= − .  The estimated sd of the unstandardized 3β̂  is .0046 .000845
5.447

= − . 

 

g. ŷ = .532 and 
0 3 3 5 5

2
ˆ ˆ ˆ .02058

x x
s s

β β β′ ′+ +
+ = , so the PI is ( )( ) ( ).532 2.110 .02058 .532 .043 .489,.575± = ± = . 

 
 
57.  

k R2 2
aR   ( )2 2 1k

k
SSEC k n

s
= + + −  

1 .676 .647 138.2 
2 .979 .975 2.7 
3 .9819 .976 3.2 
4 .9824  4 

 where s2 = 5.9825 
 

a. Clearly the model with k = 2 is recommended on all counts. 
 
b. No.  Forward selection would let x4 enter first and would not delete it at the next stage. 

 
 
58.  

a. 2 SSE 10.55131
SST 30. 395

1
4

R = − = − = .653 or 65.3%, while adjusted R2 = MSE
T

1
MS

− =  10.5513 / 241
30.4395 / 28

− = .596 or 

59.6%. Yes, the model appears to be useful. 
 

b. The null hypothesis is that none of the 10 second-order terms is statistically significant. The “partial F 

test” statistic is SSE ) / ( )
/ [ ( 1)

(SSE (10.5513 1.0108) /10
SSE 1.0108 4] /1

l k

k

k lf
n k

−
= =

− −
− +

= 13.21 > F.01,10,14. Hence, the P-

value is less than .01 and we strongly reject H0 and conclude that at least one of the second-order terms 
is a statistically significant predictor of protein yield. 

 
c. We want to compare the “full” model with 14 predictors in (b) to a “reduced” model with 5 fewer 

predictors (x1, 2
1x , x1x2, x1x3, x1x4) . As in (b), we have (1.1887 1.0108) / 4

1.0108 /14
f −
= = 0.62 < F.10,4,14. Hence, 

the P-value is > .10 and we fail to reject H0 at any reasonable significance level; therefore, it indeed 
appears that the five predictors involving x1 could all be removed. 

 
d. The “best” models seem to be the 7-, 8-, 9-, and 10-variable models. All of these models have high 

adjusted R2 values, low Mallows’ Cp values, and low s values compared to the other models.  The 6-
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variable model is notably worse than the 7-variable model; the 11-variable model is “on the cusp,” in 
that its properties are slightly worse than the 10-variable model, but only slightly so.  

 
59.  

a. The choice of a “best” model seems reasonably clear–cut.  The model with 4 variables including all but 
the summerwood fiber variable would seem best.  R2 is as large as any of the models, including the 5-
variable model. R2 adjusted is at its maximum and CP is at its minimum.  As a second choice, one 
might consider the model with k = 3 which excludes the summerwood fiber and springwood % 
variables. 
 

b. Backwards Stepping: 
 

Step 1:  A model with all 5 variables is fit; the smallest t-ratio is t = .12, associated with variable x2 
(summerwood fiber %).  Since t = .12 < 2, the variable x2 was eliminated. 

Step 2:  A model with all variables except x2 was fit.   Variable x4 (springwood light absorption) has 
the smallest t-ratio (t = –1.76), whose magnitude is smaller than 2.  Therefore, x4 is the next 
variable to be eliminated. 

Step 3:  A model with variables x3 and x5 is fit.  Both t-ratios have magnitudes that exceed 2, so both 
variables are kept and the backwards stepping procedure stops at this step.  The final model 
identified by the backwards stepping method is the one containing x3 and x5. 

 
Forward Stepping: 
 
Step 1:  After fitting all five 1-variable models, the model with x3 had the t-ratio with the largest 

magnitude (t = –4.82).  Because the absolute value of this t-ratio exceeds 2, x3 was the first 
variable to enter the model. 

Step 2:  All four 2-variable models that include x3 were fit.  That is, the models {x3, x1}, {x3, x2},       
{x3, x4}, {x3, x5} were all fit.  Of all 4 models, the t-ratio 2.12 (for variable x5) was largest in 
absolute value.  Because this t-ratio exceeds 2, x5 is the next variable to enter the model. 

Step 3:  (not printed):  All possible 3-variable models involving x3 and x5 and another predictor. None 
of the t-ratios for the added variables has absolute values that exceed 2, so no more variables are 
added.  There is no need to print anything in this case, so the results of these tests are not shown. 

 
Note: Both the forwards and backwards stepping methods arrived at the same final model, {x3, x5}, in 

this problem.  This often happens, but not always.  There are cases when the different stepwise 
methods will arrive at slightly different collections of predictor variables.  

 
60.  

a. To have a global Type I error rate no more than α = .1, we should use a .05 significance level for each 
of the two individual test (since .1/2 = .05). For x1, P-value = .0604 > .05, so we would fail to reject    
H0: β1 = 0. For x2, P-value = .0319 < .05, so we would reject H0: β2 = 0. That is, using 5% individual 
significance levels, we would remove x1 from the model and retain x2 in the model. 
 

b. These are the estimated odds ratios. For x1, e2.774 ≈ 16 means that a one-unit increase in the pillar 
height-to-width ratio is associated with an estimated 16-fold increase in the odds of stability. For x2, 
e5.668 ≈ 289 means that a one-unit increase in the pillar strength-to-stress ratio is associated with an 
estimated 289-fold increase in the odds of stability. [Note: If these odds ratios seem comically large, 
it’s because a one-unit increase in these variables, especially x2, isn’t that realistic. It might make more 
sense to ask what, for example, a 1/2-unit or 0.1-unit increase in the variables does to the estimated 
odds of stability.]  
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61. If multicollinearity were present, at least one of the four R2 values would be very close to 1, which is not 
the case.  Therefore, we conclude that multicollinearity is not a problem in this data. 

 
62. Looking at the hii column and using 2(k + 1)/n = 8/19 = .421 for the criteria, three observations appear to 

have large influence.  With hii values of .712933, .516298, and .513214, observations 14, 15, 16, 
correspond to response (y) values 22.8, 41.8, and 48.6. 

 
63. Before removing any observations, we should investigate their source (e.g., were measurements on that 

observation misread?) and their impact on the regression. To begin, Observation #7 deviates significantly 
from the pattern of the rest of the data (standardized residual = –2.62); if there’s concern the PAH 
deposition was not measured properly, we might consider removing that point to improve the overall fit. If 
the observation was not mis–recorded, we should not remove the point. 

 
We should also investigate Observation #6: Minitab gives h66 = .846 > 3(2+1)/17, indicating this 
observation has very high leverage. However, the standardized residual for #6 is not large, suggesting that 
it follows the regression pattern specified by the other observations.  Its “influence” only comes from 
having a comparatively large x1 value. 

 
 
64.  

a. Use 2(k + 1)/n = 2(2 + 1)/10 = .6: since h44 > .6, data point #4 is potentially influential (more 
accurately, it has high leverage, meaning its x-values are unusual).  

 
b. The standardized residual larger than 2 suggests that point #2 has an unusually large residual (it’s more 

than 2 standard deviations away from the regression surface). So, at the very least #2 is an outlier with 
respect to response (discharge amount). Next, let’s consider the standardized changes in slope:   

0
1.5652 1.8982:

. 28
ˆ

73
β − = –0.45; 1

.9450 1.025:
. 28

ˆ
15

β − = –0.52; 2
.1815 .3085:

. 52
ˆ

17
β − = –0.72 

These are all very small standardized changes: none of the coefficients changes more than 1 standard 
deviation when point #2 is deleted. Thus, point #2 might be an outlier, but it is not especially 
influential. 
 

c. Let’s repeat the process for point #4:  

0
1.5652 1.4592:

. 28
ˆ

73
β − = +0.14; 1

.9450 .9850:
. 28

ˆ
15

β − = –0.26; 2
.1815 .1515:

. 52
ˆ

17
β − = +0.17 

These standardized changes are even smaller than those for point #2. Thus, although h44 is large, 
indicating a potential high influence of point #4 on the fit, the actual influence does not appear to be 
great. 
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Supplementary Exercises 
 
65.  

a.  

cracked not cracked

200

700

1200

prism qualilty

pp
v

Boxplots of ppv by prism quality
(means are indicated by solid circles)

 
A two–sample t confidence interval, generated by Minitab: 
Two sample T for ppv 
 
prism qu     N      Mean     StDev   SE Mean 
cracked     12       827       295        85 
not cracke  18       483       234        55 
 
95% CI for mu (cracked   ) – mu (not cracke): ( 132,  557) 

 
b. The simple linear regression results in a significant model,  r2 is .577, but we have an extreme 

observation, with std resid = –4.11.  Minitab output is below.  Also run, but not included here was a 
model with an indicator for cracked/ not cracked, and for a model with the indicator and an interaction 
term.  Neither improved the fit significantly. 

 
The regression equation is 
ratio = 1.00 –0.000018 ppv 
 
Predictor        Coef       StDev          T        P 
Constant      1.00161     0.00204     491.18    0.000 
ppv       –0.00001827  0.00000295      –6.19    0.000 
 
S = 0.004892    R–Sq = 57.7%     R–Sq(adj) = 56.2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1  0.00091571  0.00091571     38.26    0.000 
Residual Error    28  0.00067016  0.00002393 
Total             29  0.00158587 
 
Unusual Observations 
Obs        ppv      ratio         Fit   StDev Fit    Residual    St Resid 
 29       1144   0.962000    0.980704    0.001786   –0.018704       –4.11R  
 
R denotes an observation with a large standardized residual 
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66.  
a. Our goals are to achieve a large adjusted R2, small Mallows’ Cp, and small residual standard deviation. 

By those criteria, the best two models appear to be the top 2-variable model (x3 and x5) and the top 3-
variable model (x2, x3, and x5).  

 
b. Yes: with f = 121.74 and P-value ≈ 0, we strongly reject H0: β3 = β5 = 0 and conclude that the model 

using x3 and x5 as predictors is statistically useful. 
 
c. No: the variable t-test statistics are –4.20 (P-value ≈ 0) for x3 and 15.31 (P-value ≈ 0) for x5. Therefore, 

each of these two variables is highly individually significant. 
 
d. With error df = 114 – (2 + 1) = 111 and t.025,111 ≈ 1.98, the Minitab output provides the following CIs: 

for β3:  –0.00004639 ± 1.98(0.00001104) = (–0.000068, –0.000024) 
for β5: 0.73710 ± 1.98(0.04813) = (0.64173, 0.83247) 
We are 95% confident that a 1-gram increase in dye weight is associated with a decrease in pre-dye pH 
between .000024 and .000068, after adjusting for after-dye pH. 
We are 95% confident that a 1-unit increase in after-dye pH is associated with an increase in pre-dye 
pH between .64173 and .83247, after adjusting for dye weight. 

 
e. The point estimate is ŷ = 0.9402 – 0.00004639(1000) + 0.73710(6) = 5.31637. Using the same t-value 

as in d and the standard error provided, a 95% CI for µŶ is 5.31637 ± 1.98(.0336) = (5.250, 5.383). 
 
67.  

a. After accounting for all the other variables in the regression, we would expect the VO2max to decrease 
by .0996, on average for each one-minute increase in the one-mile walk time. 

 
b. After accounting for all the other variables in the regression, we expect males to have a VO2max that is 

.6566 L/min higher than females, on average. 
 
c. ( ) ( ) ( ) ( )ˆ 3.5959 .6566 1 .0096 170 .0996 11 .0880 140 3.67y = + + − − = .  The residual is 

( )ˆ 3.15 3.67 .52y = − = − . 
 

d. 2 30.10331 1 .706,
102.3922

SSER
SST

= − = − =  or 70.6% of the observed variation in VO2max can be attributed to 

the model relationship. 
 
e. To test H0: β1 = β2 = β3 = β4 = 0 vs. Ha: at least one β ≠ 0, use R2: 

2

2

.706 / 4
(

/
) / ( 1)1 (1 .706) / (20 4 1)

kf
R n

R
k

= =
− − − −− −

= 9.005. At df = (4, 15), 9.005 > 8.25 ⇒ the P-value is 

less than .05, so H0 is rejected.  It appears that the model specifies a useful relationship between 
VO2max and at least one of the other predictors. 
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68.  

a. Yes, the scatter plot of the two transformed variables appears quite linear, and thus suggests a linear 
relationship between the two. 

 
b. Letting y denote the variable time, the regression model for the variables y′ and x′ is 

( )10log y y xα β ε′ ′ ′= = + + .  Solving for y gives ( ) ( )( ) 1log
010 10 10xy x xα β ε γα β ε γ ε′+ + ′= = = ⋅ ; i.e., the 

model is 1
0y xγγ ε= ⋅  where 0 10αγ =  and 1γ β= .   

 
c. Using the transformed variables y′  and x′ , the necessary sums of squares are 

( )( )42.4 21.69
68.640 11.1615

16x yS ′ ′ = − =  and 
( )242.4

126.34 13.98
16x xS ′ ′ = − = .  Therefore 

1
11.1615ˆ .79839
13.98

x y

x x

S
S

β ′ ′

′ ′

= = =  and ( )0
21.69 42.4ˆ .79839 .76011

16 16
β  = − = − 

 
.  The estimate of 1γ  

is 1 . 84ˆ 79γ = and .76011
0 10 10 .1737αγ −= = = .  The estimated power function model is then 

.7984.1737y x= .  For x = 300, the predicted value of y is ( ).7984ˆ .1737 300 16.502y = = , or about 16.5 
seconds. 

 
 
69.  

a. Based on a scatter plot (below), a simple linear regression model would not be appropriate.  Because of 
the slight, but obvious curvature, a quadratic model would probably be more appropriate. 
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b. Using a quadratic model, a Minitab generated regression equation is 

2ˆ 35.423 1.7191 .0024753y x x= + − , and a point estimate of temperature when pressure is 200 is 
ˆ 280.23y = .  Minitab will also generate a 95% prediction interval of (256.25, 304.22).  That is, we are 

confident that when pressure is 200 psi, a single value of temperature will be between 256.25 and 
304.22°F. 

 
 
70.  

a. For the model excluding the interaction term, 2 5.181 .394
8.55

R = − = , or 39.4% of the observed variation 

in lift/drag ratio can be explained by the model without the interaction accounted for. However, 
including the interaction term increases the amount of variation in lift/drag ratio that can be explained 

by the model to  2 3.071 .641
8.55

R = − = , or 64.1%. 

 
b. Without interaction, we are testing H0: β1 = β2 = 0 vs. Ha: β1 or β2 ≠ 0.  The calculated test statistic is 

.394 / 2
(1 .394) / (9 2 1)

f =
− − −

 = 1.95; at df = (2, 6), 1.95 yields a P-value > .10 > .05, so we fail to reject 

H0.  This model is not useful.  With the interaction term, we are testing H0: β1 = β2 = β3 = 0 vs. Ha: at 

least one of these three β’s is ≠ 0.  The new F-value is .641/ 3
(1 .641) / (9 3 1)

f =
− − −

= 2.98; at df = (3, 5), 

this still gives a P-value > .10, and so we still fail to reject the null hypothesis.  Even with the 
interaction term, there is not enough of a significant relationship between lift/drag ratio and the two 
predictor variables to make the model useful (a bit of a surprise!). 

 
 
71.  

a. Using Minitab to generate the first order regression model, we test the model utility (to see if any of 
the predictors are useful), and with f = 21.03and a P-value of .000, we determine that at least one of the 
predictors is useful in predicting palladium content.  Looking at the individual predictors, the P-value 
associated with the pH predictor has value .169, which would indicate that this predictor is 
unimportant in the presence of the others. 

 
b. We wish to test H0: 1 20... 0β β= = =  vs. Ha: at least one β ≠ 0.  With calculated statistic f = 6.29 and P-

value .002, this model is also useful at any reasonable significance level. 
 
c. Testing 0...: 2060 === ββH  vs. Ha: at least one of the listed β’s ≠ 0, the test statistic is 

07.1
)12032(27.290

)520/()27.29010.716(
=

−−
−−

=f  < F.05,15,11 = 2.72. Thus, P-value > .05, so we fail to reject H0 

and conclude that all the quadratic and interaction terms should not be included in the model.  They do 
not add enough information to make this model significantly better than the simple first order model. 
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d. Partial output from Minitab follows, which shows all predictors as significant at level .05: 

The regression equation is 
pdconc = – 305 + 0.405 niconc + 69.3 pH – 0.161 temp + 0.993 currdens 
           + 0.355 pallcont – 4.14 pHsq 
 
Predictor        Coef       StDev          T        P 
Constant      –304.85       93.98      –3.24    0.003 
niconc        0.40484     0.09432       4.29    0.000 
pH              69.27       21.96       3.15    0.004 
temp         –0.16134     0.07055      –2.29    0.031 
currdens       0.9929      0.3570       2.78    0.010 
pallcont      0.35460     0.03381      10.49    0.000 
pHsq           –4.138       1.293      –3.20    0.004 
 
 

72.  

a. 2 .800171 1 .9506
16.18555

SSER
SST

= − = − = , or 95.06% of the observed variation in weld strength can be 

attributed to the given model. 
 
b. The complete second order model consists of nine predictors and nine corresponding coefficients.  The 

hypotheses are H0: 1 9... 0β β= = =  vs. Ha: at least one of the β’s. The test statistic value is 
.9506 / 9

(1 .9506) / (37 9 1)
f =

− − −
 = 57.68, with a corresponding P-value of ≈ 0. We strongly reject the null 

hypothesis.  The complete second order model is useful. 
 

c. To test H0: β7 = 0 vs. Ha: β7 ≠ 0 (the coefficient corresponding to the wc*wt predictor), use the test 
statistic value 2.32 1.52t f= = = .  With df = 27, P-value ≈ 2(.073) = .146 from Table A.8.  With 
such a large P-value, this predictor is not useful in the presence of all the others, so it can be 
eliminated. 

 
d. The point estimate is ( ) ( ) ( ) ( ) ( )2 2ˆ 3.352 .098 10 .222 12 .297 6 .0102 10 .037 6y = + + + − −  

( )( ).0128 10 12 7.962+ = .  With t.025,27 = 2.052, the 95% PI would be 

( ) ( )7.962 2.052 .0750 7.962 .154 7.808,8.116± = ± = .  Because of the narrowness of the interval, it 
appears that the value of strength can be accurately predicted. 

 
 
73.  

a. We wish to test H0: β1 = β2 = 0 vs. Ha: either β1 or β2 ≠ 0.  With 9986.
88.202

29.12 =−=R , the test 

statistic is
2

2

/ .9986 / 2
(1 ) / ( 1) (1 .9986) / (8 2 1)

R kf
R n k

= =
− − − − − −

= 1783, where k = 2 for the quadratic model.  

Clearly the P-value at df = (2,5) is effectively zero, so we strongly reject H0 and conclude that the 
quadratic model is clearly useful. 

 
b. The relevant hypotheses are Ha: β2 = 0 vs. Ha: β2 ≠ 0.  The test statistic value is 

2

2

ˆ

ˆ .00163141 0 48.1
.00003391

t
s
β

β − −
= = = − ; at 5 df, the P-value is 2P(T ≥ |–48.1|) ≈ 0. Therefore, H0 is rejected.  

The quadratic predictor should be retained. 
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c. No.  R2 is extremely high for the quadratic model, so the marginal benefit of including the cubic 
predictor would be essentially nil – and a scatter plot doesn’t show the type of curvature associated 
with a cubic model. 

 
d. 571.25,025. =t , and ( ) ( ) 36.21100ˆ100ˆˆ 2

210 =++ βββ , so the CI is 21.36 ± 2.571(.1141) = 21.36 ± .29 
= (21.07,21.65). 

 
e. First, we need to figure out s2 based on the information we have been given: s2 = MSE = SSE/df = 

.29/5 = .058. Then, the 95% PI is ( )045.22,675.20685.036.21)1141(.058.571.236.21 2 =±=+± . 
 
74.  

a. Our goals are to achieve large adjusted R2, small Mallows’ Cp and small residual standard deviation. 
Based on those criteria, the “best” models appear to be the two 3-variable models ( 2

1 3 3, ,xx x   and 
2 2

3 1 3, ,x x x  ) and the top 4-variable model ( 2
1 3 3 1 3,, ,x x xx x ). Note: In practice, we might be leery of the 

two 3-variable models, because negative Cp can sometimes indicate a biased model. Also, we would 
traditionally reject the second 3-variable model, because we would not include 2

1x without x1. 
 

b. With n = 15 and k = 3 in this case, error df = 15 – 3 – 1 = 11. To test H0: β1 = 0 vs. Ha: β1 ≠ 0, the test 
statistic –1.32 is compared to the t distribution with 11 df: P-value = 2P(T ≥ |–1.32|) ≈ 2(.11) = .22. 
With such a large P-value, we fail to reject H0 and conclude that x1 is not a statistically significant 
predictor of tenacity with x3 and 2

3x  already in the model. 
 

c. Yes to both questions. Although model utility is obvious from the individual P-values listed, we can 

test H0: β1 = β2 = 0 vs. Ha: either β1 or β2 ≠ 0 as follows. .734 / 2
(1 .734) / (15 2 1)

f =
− − −

= 16.56 > 12.97 = 

F.001,2,12 ⇒ P-value < .001 ⇒ reject H0 (the model is useful). Next, the variable utility test for the 
quadratic term yields t = –5.46 and P-value = 0.000, so again we reject the null hypothesis, meaning 
here that the quadratic term should be retained. 
 

d. Let’s construct a 95% PI for Y when x3 = 6. First, a point prediction is ŷ = –24.743 + 14.457(6) – 
1.2284(6)2 = 17.7766. Next, the prediction SE is 2 2 2 2

ˆ .43509 .167 4Ys s ++ = = .465. Finally, with 
error df = 15 – (2 + 1) = 12, t.025,12 = 2.179.  Putting it all together, a 95% PI for tenacity when the 
number of draw frame doubling equals 6 is 17.7766 ± 2.179(.465) = (16.76, 18.79). 

 
75.  

a. To test H0: β1 = β2 = 0 vs. Ha: either β1 or β2 ≠ 0, first find R2: SST = 22 ) /( 264.5y nyΣ − =Σ ⇒  R2 =       

1 – SSE/SST = 1 – 26.98/264.5 = .898. Next, .898 / 2
(1 .898) / (10 2 1)

f =
− − −

= 30.8, which at df = (2,7) 

corresponds to a P-value of ≈ 0. Thus, H0 is rejected at significance level .01 and the quadratic model 
is judged useful. 

 
b. The hypotheses are H0: β2 = 0 vs. Ha: β2 ≠ 0.  The test statistic value is t = (–2.3621 – 0)/.3073 = –7.69, 

and at 7 df the P-value is 2P(T ≥ |–7.69|) ≈ 0. So, H0 is rejected at level .001. The quadratic predictor 
should not be eliminated. 

 
c. x = 1 here, ( ) ( )2

1 0 1 2
ˆ ˆ ˆˆ 1 1 45.96Yµ β β β⋅ = + + = , and t.025,7 = 1.895, giving the CI 

( )( ) ( )91.47,01.44031.1895.196.45 =± . 
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76.  
a. 80.79 
 
b. Yes, P-value = .007 which is less than .01. 
 
c. No, P-value = .043 which is less than .05. 
 
d. ( )( ) ( )2224,.0609.03301.447.214167. =±  
 
e. 9,66ˆ 6.3067yµ ⋅ = , using α = .05, the interval is ( ) ( ) ( ) ( )2 26.3067 2.447 .4851 .162 5.06,7.56± + =  
 

 
77.  

a. The hypotheses are H0: β1 = β2 = β3 = β4 = 0 versus Ha: at least one βi ≠ 0. From the output, the F-
statistic is f = 4.06 with a P-value of .029. Thus, at the .05 level we reject H0 and conclude that at least 
one of the explanatory variables is a significant predictor of power. 

 
b. Yes, a model with R2 = .834 would appear to be useful. A formal model utility test can be performed: 

2

2

/
) / [ ( 1

.834 / 3
(1 (1 .834) / [16 4])]

k
n k

Rf
R

= =
−+ −−−

= 20.1, which is much greater than F.05,3,12 = 3.49. Thus, 

the mode including {x3, x4, x3x4} is useful. 
 

We cannot use an F test to compare this model with the first-order model in (a), because neither model 
is a “subset” of the other. Compare {x1, x2, x3, x4} to {x3, x4, x3x4}. 

 
c. The hypotheses are H0: β5 = … = β10 = 0 versus Ha: at least one of these βi ≠ 0, where β5 through β10 are 

the coefficients for the six interaction terms. The “partial F test” statistic is 
2 2

2

SSE ) / ( ) )(SSE ( (.960 .596) / (10 4)/ ( )
/ [ ( 1)] (1 )SSE (1 .9/ [ ( 1)] 60) / [16 (10 1)]

l k

k k

k lk l R k l
n k R n

f
k

R− − − − − −
= =

− −+ −
=

− +− +
= 7.58, which is greater 

than F.05,6,5 = 4.95. Hence, we reject H0 at the .05 level and conclude that at least one of the interaction 
terms is a statistically significant predictor of power, in the presence of the first-order terms. 

 
 

78.  
a. After adjusting for the effects of fiber content and hydraulic gradient, a 1 mm increase in fiber length is 

associated with an estimated .0003020 cm/sec decrease in expected seepage velocity. 
 

b. The hypotheses are H0: β1 = 0 versus Ha: β1 ≠ 0. From the output, the test statistic and P-value are t = –
1.63 and P = .111. Since this P-value is larger than any reasonable significance level, we fail to reject 
H0. In the presence of fiber length and hydraulic gradient, fiber content is not a statistically significant 
predictor of seepage velocity. 

 
c.  Before we begin the hypothesis test, let’s calculate ŷ for these settings: ŷ = –.005315 –.0004968(25) + 

.102204(1.2) = .1049. Let μY denote the true mean seepage velocity at these settings; the hypotheses of 

interest are H0: μY = .1 versus Ha: μY ≠ .1. The test statistic is .1049 .1
.00286

t −
= = 1.71; at df = 49 – (2 + 1) = 

46, the P-value is roughly 2(.048) = .096. At the .05 level, we fail to reject H0; there is not significant 
evidence that the true mean at these settings differs from .1. 
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d. The hypotheses are H0: β4 = β5 = β6 = 0 versus Ha: at least one of these βi ≠ 0, where β4 through β6 are 
the coefficients for the three interaction terms (x1x2, x1x3, x2x3). The “partial F test” statistic is 

(SSE (.011862 .0SSE ) / 03579( )
/

) / (
[

6 3)
SSE .003579 / [49 (6 1( 1)] )]

l k

k

k l
n k

f − −
− +

− −
= =

− +
= 16.2 > F.01,3,42 = 4.29. Hence, we reject H0 

and conclude the “full” model, i.e. the model with interaction terms, should be retained over the first-
order model. 

 
79. There are obviously several reasonable choices in each case.  In a, the model with 6 carriers is a defensible 

choice on all three grounds, as are those with 7 and 8 carriers.  The models with 7, 8, or 9 carriers in b 
merit serious consideration.  These models merit consideration because 2

kR , MSEk, and Ck meet the variable 
selection criteria given in Section 13.5.   

 
80.  

a. .90 /15 2.4
(1 .90) / 4

f = =
−

, for a P-value > .100 at df = (15,4). Hence, 0 1 15: ... 0H β β= = =  cannot be 

rejected.  There does not appear to be a useful linear relationship. 
 
b. The high R2 value resulted from saturating the model with predictors.  In general, one would be 

suspicious of a model yielding a high R2 value when k is large relative to n. 
 

c. We get a P-value ≤ .05 iff f ≥ F.05,15,4 = 5.86. 
2

2

/15
) / 4

5.86
(1

R
R

≥
−

 iff 
2

2 21.975
1

R
R

≥
−

 iff 

2 21.975 .9565
22.975

R ≥ = . 

 
 
81.  

a. The relevant hypotheses are 0...: 510 === ββH  vs. Ha:  at least one among 51,...,ββ  ≠ 0.  f = 

11/173.
5/827. = 106.1 ≥ F.05,5,111 ≈ 2.29, so P-value < .05. Hence, H0 is rejected in favor of the conclusion 

that there is a useful linear relationship between Y and at least one of the predictors. 
 
b. 66.1111,05. =t , so the CI is ( )( ) ( )068,.014.027.041.016.66.1041. =±=± .  β1 is the expected change in 

mortality rate associated with a one-unit increase in the particle reading when the other four predictors 
are held fixed; we can be 90% confident that .014 < β1 < .068. 

 

c. In testing H0: β4 = 0 versus Ha: β4 ≠ 0, 
4

4

ˆ

.047ˆ 0 5.9

.007
t

s
β

β −
== = , with an associated P-value of ≈ 0. So, 

H0 is rejected and this predictor is judged important. 
 
d. ( ) ( ) ( ) ( ) ( ) 514.9995.687.68041.788001.60071.166041.607.19ˆ =+++++=y , and the corresponding residual is 

103 – 99.514 = 3.486. 
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82.  

a. The set  1 3 4 5 6 8, , , , ,x x x x x x  includes both 1 4 5 8, , ,x x x x  and 1 3 5 6, , ,x x x x , so 

( )2 2 2
1,3,4,5,6,8 1,4,5,8 1,3,5,6max , .723R R R≥ = . 

 
b. 2 2

1,4 1,4,5,8 .723R R≤ = , but it is not necessarily ≤ .689 since 1 4,x x  is not a subset of 1 3 5 6, , ,x x x x . 
 

83. Taking logs, the regression model is ln(Y) = β0 + β1 ln(x1) + β2 ln(x2) + ε′, where β0 = ln(α). Relevant 
Minitab output appears below. 
a. From the output, 0 1 210.8764, 1.2060, 1.398ˆ ˆ 8β̂ β β= = − = − . In the original model, solving for α returns 

10.8764
0

ˆˆ exp( ) eα β= =  = 52,912.77. 
 

b. From the output, R2 = 78.2%, so 78.2% of the total variation in ln(wear life) can be explained by a 
linear regression on ln(speed) and ln(load). From the ANOVA table, a test of H0: β1 = β2 = 0 versus  
Ha: at least one of these β’s ≠ 0 produces f = 42.95 and P-value = 0.000, so we strongly reject H0 and 
conclude that the model is useful. 
 

c. Yes: the variability utility t-tests for the two variables have t = –7.05, P = 0.000 and t = –6.01, P = 
0.000. These indicate that each variable is highly statistically significant. 

d. With ln(50) ≈ 3.912 and ln(5) ≈ 1.609 substituted for the transformed x values, Minitab produced the 
accompanying output. A 95% PI for ln(Y) at those settings is (2.652, 5.162). Solving for Y itself, the 
95% PI of interest is (e2.652, e5.162) = (14.18, 174.51). 

 
 

The regression equation is 
ln(y) = 10.9 - 1.21 ln(x1) - 1.40 ln(x2) 
 
Predictor     Coef  SE Coef      T      P 
Constant   10.8764   0.7872  13.82  0.000 
ln(x1)     -1.2060   0.1710  -7.05  0.000 
ln(x2)     -1.3988   0.2327  -6.01  0.000 
 
S = 0.596553   R-Sq = 78.2%   R-Sq(adj) = 76.3% 
 
Analysis of Variance 
 
Source          DF      SS      MS      F      P 
Regression       2  30.568  15.284  42.95  0.000 
Residual Error  24   8.541   0.356 
Total           26  39.109 
 
Predicted Values for New Observations 
 
New Obs    Fit  SE Fit      95% CI          95% PI 
      1  3.907   0.118  (3.663, 4.151)  (2.652, 5.162) 
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CHAPTER 14 
 

Section 14.1 
 
1. For each part, we reject H0 if the P-value is ≤ α, which occurs if and only the calculated χ2 value is greater 

than or equal to the value 2
, 1kαχ −  from Table A.7. 

a. Since 2
.05,412.25 9.488χ≥ = , P-value ≤ .05 and we would reject H0. 

 
b. Since 8.54 < 2

.01,3 11.344χ = , P-value > .01 and we would fail to reject H0. 
 
c. Since 4.36 < 2

.10,2 4.605χ = , P-value > .10 and we would fail to reject H0. 
 
d. Since 10.20 < 2

.01,5 15.085χ = , P-value > .01 we would fail to reject H0. 
 
 
2. Let p1, p2, p3, p4 denote the true proportion of all African American, Asian, Caucasian, and Hispanic 

characters in commercials (broadcast in the Philadelphia area), respectively. The null hypothesis is H0: p1 = 
.177, p2 = .032, p3 = .734, p4 = .057 (that is, the proportions in commercials match census proportions). The 
alternative hypothesis is that at least one of these proportions is incorrect. 
 
The sample size is n = 404, so the expected counts under H0 are 404(.177) = 71.508, 404(.032) = 12.928, 
404(.734) = 296.536, and 404(.057) = 23.028. The resulting chi-squared goodness-of-fit statistic is 

2 2
2 (57 71.508) (6 23.028)

71.508 23.028
χ − −

= + + = 19.6. 

At df = 4 – 1 = 3, the P-value is less than .001 (since 19.6 > 16.26). Hence, we strongly reject H0 and 
conclude that at least one of the racial proportions in commercials is not a match to the census proportions. 

 
 
3. The uniform hypothesis implies that 1

0 8 .125ip = =  for i = 1, …, 8, so the null hypothesis is 

0 10 20 80: ... .125H p p p= = = = . Each expected count is npi0 = 120(.125) = 15, so 

( ) ( )2 2
2 12 15 10 15

... 4.80
15 15

χ
 − −

= + + = 
  

. At df = 8 – 1 = 7, 4.80 < 12.10 ⇒ P-value > .10 ⇒ we fail to 

reject H0. There is not enough evidence to disprove the claim.  
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4. Let pi = P(first significant digit is i). We wish to test H0: pi = log10((i + 1)/i) for i = 1, 2, …, 9. The observed 

values, probabilities, expected values, and chi-squared contributions appear in the accompanying table. 
 

Obs 342 180 164 155 86 65 54 47 56 

pi0 .3010 .1760 .1249 .0969 .0791 .0669 .0579 .0511 .0457 

Exp 345.88 202.32 143.55 111.35 90.979 76.921 66.632 58.774 52.575 

(O–E)2/E .0436 2.4642 2.9119 17.111 .2725 1.8477 2.3950 2.3587 .2231 
 

The χ2 statistic is .0436 + … + .2231 = 29.6282.  With df = 9 – 1 = 8, our χ2 value of 29.6282 exceeds 
26.12, so the P-value < .001 and we strongly reject H0.  There is significant evidence to suggest that the 
first significant digits deviate from Benford’s law. (In particular, the number of observed values with lead 
digit = 4 is far greater than expected under this law.)  

 
 
5. The observed values, expected values, and corresponding χ2 terms are : 
 

Obs 4 15 23 25 38 21 32 14 10 8 
Exp 6.67 13.33 20 26.67 33.33 33.33 26.67 20 13.33 6.67 
χ2 1.069 .209 .450 .105 .654 .163 1.065 1.800 .832 .265 

 
χ2 = 1.069 + … + .265 = 6.612. With df = 10 – 1 = 9, 6.612 < 14.68 ⇒ P-value > .10 ⇒  we cannot reject 
H0.  There is no significant evidence that the data is not consistent with the previously determined 
proportions.  
 
 

6. Under the assumption that each medal pair has probability 1/9, the probabilities of the categories {match, 
one off, two off} are 3/9, 4/9, and 2/9, respectively. Let p1, p2, p3 denote the probabilities of these three 
categories, so the hypotheses are H0: p1 = 3/9, p2 = 4/9, p3 = 2/9 versus Ha: these are not correct.  
 
The sample size is n = 216, so the expected counts are 72, 96, and 48, for a test statistic of 

2 2 2
2 (69 72) (102 96) (45 48)

72 96 48
χ − − −

+= + = 0.6875. At df = 3 – 1 = 2, the P-value is much greater than .10 

since 0.6875 is much less than 6.25. 
 
Therefore, we fail to reject H0. The data is consistent with the hypothesis that expert and consumer ratings 
are independent and equally likely to be Gold, Silver, or Bronze. 

 
 
7. We test 20 1 3 4: .25H p p p p= = = =  vs. Ha: at least one proportion ≠ .25, and df = 3.   
 

Cell 1 2 3 4 
Observed 328 334 372 327 
Expected 340.25 340.25 340.25 34.025 
χ2 term .4410 .1148 2.9627 .5160 

 
χ2 = 4.0345, and with 3 df, P-value > .10, so we fail to reject H0.  The data fails to indicate a seasonal 
relationship with incidence of violent crime. 
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8. 15 46 120 184
1 2 3 4365 365 365 3650 : , , , ,H p p p p= = = =  versus Ha: at least one proportion is not a stated in H0.   

 
Cell 1 2 3 4 

Observed 11 24 69 96 
Expected 8.22 25.21 65.75 100.82 
χ2 term .9402 .0581 .1606 .2304 

 
χ2 = 1.3893, df = 4 – 1 = 3 ⇒ P-value > .10 and so H0 is not rejected.  The data does not indicate a 
relationship between patients’ admission date and birthday. 

 
 
9.  

a. Denoting the 5 intervals by [0, c1), [c1, c2), …, [c4, ∞ ), we wish c1 for which 

( ) 1
1

1 0
.2 0 1

c cxP X c e dx e−−= ≤ ≤ = = −∫ , so c1 = –ln(.8) = .2231.  Then 

( ) ( ) 2
1 2 1 2.2 .4 0 1 cP c X c P X c e−= ≤ ≤ ⇒ = ≤ ≤ = − , so c2 = –ln(.6) = .5108.  Similarly, c3 = –ln(.4) = 

.0163 and c4 = –ln(.2) = 1.6094. The resulting intervals are [0, .2231), [.2231, .5108), [.5108, .9163), 
[.9163, 1.6094), and [1.6094, ∞ ). 

 
b. Each expected cell count is 40(.2) = 8, and the observed cell counts are 6, 8, 10, 7, and 9, so 

( ) ( )2 2
2 6 8 9 8

... 1.25
8 8

χ
 − −

= + + = 
  

.  Because 1.25 < 2
.10,4 7.779χ = , even at level .10 H0 cannot be 

rejected; the data is quite consistent with the specified exponential distribution. 
 
 
10.  

a. 

( )2 2 2 2 2
2 0 0 0

0
1 0 0 0

2 2

0 0

2 2

2 (1)

k
i i i i i i i

i ii ii i ii i i

i i

i ii i

n np N np N n p N N n p
np np np

N Nn n n
np np

χ
=

− − +
= = = − Σ + Σ

= − + = −

∑ ∑ ∑

∑ ∑
  

This formula involves only one subtraction, and that’s at the end of the calculation, so it is analogous 
to the shortcut formula for s2. 

 

b. 2 2
i

i

k N n
n

χ = −∑ .  For the pigeon data, k = 8, n = 120, and 2 1872iNΣ = , so 

( )2 8 1872
120 124.8 120 4.8

120
χ = − = − =  as before. 

 
 
11.  

a. The six intervals must be symmetric about 0, so denote the 4th, 5th and 6th intervals by [0, a), [a, b),    
[b, ∞).  The constant a must be such that ( ) ( )1 1

2 6.6667aΦ = + , which from Table A.3 gives a ≈ .43.   
Similarly, Φ(b) = .8333 implies b ≈ .97, so the six intervals are (–∞ , –.97), [–.97, –.43), [–.43, 0),     
[0, .43), [.43, .97), and [.97, ∞). 

 
b. The six intervals are symmetric about the mean of .5.  From a, the fourth interval should extend from 

the mean to .43 standard deviations above the mean, i.e., from .5 to .5 + .43(.002), which gives         
[.5, .50086).  Thus the third interval is [.5 – .00086, .5) = [.49914, .5).  Similarly, the upper endpoint of 
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the fifth interval is .5 + .97(.002) = .50194, and the lower endpoint of the second interval is .5 – .00194 
= .49806.  The resulting intervals are (–∞, .49806), [.49806, .49914), [.49914, .5), [.5, .50086), 
[.50086, .50194), and [.50194, ∞). 

 
c. Each expected count is 45(1/6) = 7.5, and the observed counts are 13, 6, 6, 8, 7, and 5, so χ2 = 5.53.  

With 5 df, the P-value > .10, so we would fail to reject H0 at any of the usual levels of significance.  
There is no significant evidence to suggest that the bolt diameters are not normally distributed with       
μ = .5 and σ = .002. 

 
 

Section 14.2 
 
12.  

a. Let θ denote the probability of a male (as opposed to female) birth under the binomial model.  The four 
cell probabilities (corresponding to x = 0, 1, 2, 3) are ( ) ( )3

1 1π θ θ= − , ( ) ( )2
2 3 1π θ θ θ= − , 

( ) ( )2
3 3 1π θ θ θ= − , and ( ) 3

4π θ θ= .  The likelihood is ( ) 1 2 32 3 2 3 4
3 2 2 33 1 n n nn n n n nθ θ+ ++ + +⋅ − ⋅ .   

Forming the log likelihood, taking the derivative with respect to θ, equating to 0, and solving yields 
2 3 42 3 66 128 48ˆ .504

3 480
n n n

n
θ + + + +
= = = .  The estimated expected counts are ( )3160 1 .504 19.52− = , 

( )( )2480 .504 .496 59.52= , 60.48, and 20.48, so 

( ) ( )2 2
2 14 19.52 16 20.48

... 1.56 .71 .20 .98 3.45
19.52 20.48

χ
 − −

= + + = + + + = 
  

.  The number of degrees of 

freedom for the test is 4 – 1 – 1 = 2. Because 3.45 < 4.60 ⇒ P-value > .10 ⇒  H0 of a binomial 
distribution is not rejected. The binomial model is judged to be plausible. 

 

b. Now 53ˆ .353
150

θ = =  and the estimated expected counts are 13.54, 22.17, 12.09, and 2.20.  The last 

estimated expected count is much less than 5, so the chi-squared test based on 2 df should not be used. 
 
 
13. According to the stated model, the three cell probabilities are (1 – p)2, 2p(1 – p), and p2, so  we wish the 

value of p which maximizes ( ) ( ) 21 3
2 21 2 1

nn np p p p− −   .  Proceeding as in Example 14.6 gives 

2 32 234ˆ .0843
2 2776

n np
n
+

= = = .  The estimated expected cell counts are then ( )2ˆ1 1163.85n p− = , 

( ) 2ˆ ˆ2 1 214.29n p p− =   , 2ˆ 9.86np = .  This gives 

( ) ( ) ( )2 2 2
2 1212 1163.85 118 214.29 58 9.86

280.3
1163.85 214.29 9.86

χ
 − − −

= + + = 
  

.  With df = 4 – 1 – 1 = 2, 280.3 > 13.81 

⇒ P-value < .001 ⇒ H0 is soundly rejected. The stated model is strongly contradicted by the data. 
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14.  
a. We wish to maximize ( )1i

nx np pΣ − − , or equivalently ( ) ( )ln ln 1ix n p n pΣ − + − .  Equating d/dp to 0 

yields ( )
( )1

ix n n
p p

Σ −
=

−
, whence 

( )i

i

x n
p

x
Σ −

=
Σ

.  For the given data, 

(1)(1) (2)(31) ... (12)(1) 363ixΣ = + + + = , so ( )363 130
ˆ .642

363
p

−
= = , and ˆ .358q = . 

 
b. Each estimated expected cell count is p̂ times the previous count, giving ˆ 130(.358) 46.54nq = = , 

ˆ ˆ 46.54(.642) 29.88nqp = = , 19.18, 12.31, 17.91, 5.08, 3.26, … .  Grouping all values ≥ 7 into a single 
category gives 7 cells with estimated expected counts 46.54, 29.88, 19.18, 12.31, 7.91, 5.08 (sum = 
120.9), and 130 – 120.9 = 9.1.  The corresponding observed counts are 48, 31, 20, 9, 6, 5, and 11, 
giving χ2 = 1.87.  With k = 7 and m = 1 (p was estimated), df = 7 – 1 – 1 = 5 and 1.87 < 9.23 ⇒ the    
P-value > .10 ⇒ we don’t reject H0. 

 

15. The part of the likelihood involving θ is ( )[ ] ( )[ ] ( )[ ] ⋅−⋅−⋅− 321 2234 111
nnn

θθθθθ  

( )[ ] [ ] ( ) ( )36723323443243 111 4321543254 θθθθθθθ −=−=⋅− ++++++ nnnnnnnnnn
, so the log-likelihood is 

( )θθ −+ 1ln367ln233 .  Differentiating and equating to 0 yields ,3883.
600
233ˆ ==θ  and ( ) 6117.ˆ1 =−θ  

[note that the exponent on θ is simply the total # of successes (defectives here) in the n = 4(150) = 600 
trials].  Substituting this θ̂  into the formula for pi yields estimated cell probabilities .1400, .3555, .3385, 
.1433, and .0227.  Multiplication by 150 yields the estimated expected cell counts are 21.00, 53.33, 50.78, 
21.50, and 3.41.  the last estimated expected cell count is less than 5, so we combine the last two categories 
into a single one (≥ 3 defectives), yielding estimated counts 21.00, 53.33, 50.78, 24.91, observed counts 26, 
51, 47, 26, and 62.12 =χ .  With df = 4 – 1 – 1 = 2, since 605.462.1 2

2,10. =< χ , the P-value > .10, and we 
do not reject H0.  The data suggests that the stated binomial distribution is plausible. 

 
 
16.  

a. First, we need the maximum likelihood estimate for the unknown mean parameter µ:  
( )( ) ( )( ) ( )( )0 1627 1 421 ... 15 2 2636

1627 421 ... 2 263
ˆ

7
xµ

+ + +
= = =

+ + +
≈ 1. So, estimated cell probabilities are computed 

from the Poisson pmf 
ˆ 1ˆˆ ( )
! !

xe ep x
x x

µµ− −

= =  . In order to keep all expected counts sufficiently large, we 

collapse the values 5-15 into a “≥ 5” category. For that category, the estimated probability is 1 – [sum 
of the other probabilities]. 

 
x 0 1 2 3 4 ≥ 5 
Obs. 1627 421 219 130 107 133 
Prob. .367879 .367879 .183940 .061313 .015328 .003661 
Exp. 970.098 970.098 485.049 161.683 40.421 9.651 

 
From these, the test statistic is χ2 = … = 2594, which is extremely large at df = 6 – 1 – 1 = 4 (or any df, 
really). Hence, we very strongly reject H0 and conclude the data are not at all consistent with a Poisson 
distribution. 
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b. The specified probabilities do not sum to 1, so we’ll assume the hypothesized probability for the “12+” 
category is the remainder (which is .0047). The calculated test statistic from the specified probabilities 
is χ2 = … = 28.12; at df = 13 – 1 – 2 = 10 (we lose 2 df estimating the gamma parameters), the 
corresponding P-value is between .005 and .001. Hence, we reject H0 again and conclude that this 
more complicated model also does not fit the data well. 

 
 

17. ( )( ) ( )( ) ( )( ) ( )( ) ( )( )0 6 1 24 2 42 ... 8 6 9 2 1163 3.88
300 300

ˆ xµ
+ + + + +

= = = = , so the estimated cell probabilities 

are computed from ( )
!

88.3ˆ 88.3

x
ep

x
−= .  

 
x 0 1 2 3 4 5 6 7 ≥ 8 

np(x) 6.2 24.0 46.6 60.3 58.5 45.4 29.4 16.3 13.3 

obs 6 24 42 59 62 44 41 14 8 
 

This gives χ2 = 7.789. At df = 9 – 1 – 1 = 7, 7.789 < 12.01 ⇒ P-value > .10 ⇒ we fail to reject H0. The 
Poisson model does provide a good fit. 

 
 

18. ( )1
.100 .173ˆ ( .100) 1.11 .1335

.066
p P X P Z − = < = < = Φ − = 

 
, 

( )2ˆ (.100 .150) 1.11 .35 .2297p P X P Z= ≤ ≤ = − ≤ ≤ − = , ( )3ˆ .35 .41 .2959p P Z= − ≤ ≤ = , 

( )4ˆ .41 1.17 .2199p P Z= ≤ ≤ = , and 5ˆ .1210p = .  The estimated expected counts are then (multiply ˆ ip  by 
n = 83) 11.08, 19.07, 24.56, 18.25, and 10.04, from which χ2 = 1.67.  With df = 5 – 1 – 2 = 2, the resulting 
P-value is > .10 and the hypothesis of normality cannot be rejected. 

 
 
19. With A = 2n1 + n4 + n5, B = 2n2 + n4 + n6, and C = 2n3 + n5 + n6, the likelihood is proportional to 

( )1 2 1 21 CA Bθ θ θ θ− − .  Taking the natural log and equating both 
1θ

∂
∂

 and 
2θ

∂
∂

 to zero gives 
1 1 21

A C
θ θ θ

=
− −

 

and 
2 1 21

B C
θ θ θ

=
− −

, whence 1
2

B
A
θθ = .  Substituting this into the first equation gives 1

A
A B C

θ =
+ +

, and 

then 2
B

A B C
θ =

+ +
.  Thus 1 4 5

1
2ˆ

2
n n n

n
θ + +
= , 2 4 6

2
2ˆ

2
n n n

n
θ + +

= , and ( ) 3 5 6
1 2

2ˆ ˆ1
2

n n n
n

θ θ + +
− − = .  

Substituting the observed ni’s yields ( )
1

2 49 20 53ˆ .4275
400

θ
+ +

= = , 2
110ˆ .2750
400

θ = = , and 

( )1 2
ˆ ˆ1 .2975θ θ− − = , from which ( )2

1ˆ .4275 .183p = = , 2ˆ .076p = , 3ˆ .089p = , ( )( )4ˆ 2 .4275 .275 .235p = = , 

5ˆ .254p = , 6ˆ .164p = . 
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Category 1 2 3 4 5 6 

np 36.6 15.2 17.8 47.0 50.8 32.8 

observed 49 26 14 20 53 38 
 
This gives χ2 = 29.1. At df = 6 – 1 – 2 = 3, this gives a P-value less than .001. Hence, we reject H0. 
 

 
20. The pattern of points in the plot appear to deviate from a straight line, a conclusion that is also supported by 

the small P-value (< .01) of the Ryan-Joiner test.  Therefore, it is implausible that this data came from a 
normal population.  In particular, the observation 116.7 is a clear outlier.  It would be dangerous to use the 
one-sample t interval as a basis for inference. 

 
 
21. The Ryan-Joiner test P-value is larger than .10, so we conclude that the null hypothesis of normality cannot 

be rejected.  This data could reasonably have come from a normal population.  This means that it would be 
legitimate to use a one-sample t test to test hypotheses about the true average ratio. 

 
 
22. Minitab performs the Ryan-Joiner test automatically, as seen in the accompanying plot. The Ryan-Joiner 

correlation test statistic is r = 0.964 with a P-value of 0.037. Thus, we reject the null hypothesis that the 
alcohol content distribution is normal at the .05 level.  

 

24232221201918171615

99

95

90

80

70
60
50
40
30

20

10

5

1

alcohol content

Pe
rc

en
t

Mean 19.26
StDev 1.832
N 35
RJ 0.964
P-Value 0.037

Probability Plot of alcohol content
Normal 

 
 
23. Minitab gives r = .967, though the hand calculated value may be slightly different because when there are 

ties among the x(i)’s, Minitab uses the same yi for each x(i) in a group of tied values.  c10 = .9707, and c.05 = 
9639, so .05 < P-value < .10.  At the 5% significance level, one would have to consider population 
normality plausible. 
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Section 14.3 
 
24. H0:  TV watching and physical fitness are independent of each other 

Ha:  the two variables are not independent 
df = (4 – 1)(2 – 1) = 3; with α = .05,  
Computed 2 6.161χ = < 7.815 ⇒ P-value > .05 
Fail to reject H0.  The data fail to indicate a significant association between daily TV viewing habits and 
physical fitness. 

 
 
25. The hypotheses are H0: there is no association between extent of binge drinking and age group vs.           

Ha: there is an association between extent of binge drinking and age group. With the aid of software, the 
calculated test statistic value is χ2 = 212.907. With all expected counts well above 5, we can compare this 
value to a chi-squared distribution with df = (4 – 1)(3 – 1) = 6. The resulting P-value is ≈ 0, and so we 
strongly reject H0 at any reasonable level (including .01). There is strong evidence of an association 
between age and binge drinking for college-age males. In particular, comparing the observed and expected 
counts shows that younger men tend to binge drink more than expected if H0 were true. 

 
 
26. Let pi = the true incidence rate of salmonella for the ith type of chicken (i = 1, 2, 3). Then the hypotheses 

are H0: p1 = p2 = p3 vs. Ha: these three true rates are not all equal. To apply the chi-squared test, form a 3x2 
table with salmonella contamination classified as yes or no: 
 

 Contaminated Not Total 
1. 27 33 60 
2. 32 28 60 
3. 45 75 120 

 
With the aid of software, the calculated test statistic is χ2 = 4.174. All expected counts are much larger than 
5, so we compare this value to a chi-squared distribution with df = (3 – 1)(2 – 1) = 2. From Table A.11, the 
P-value is > .10, so we fail to reject H0. We do not have statistically significant evidence sufficient to 
conclude that the true incidence rates of salmonella differ for these three types of chicken. 
 

 
27. With i = 1 identified with men and i = 2 identified with women, and j = 1, 2, 3 denoting the 3 categories 

L>R, L=R, L<R, we wish to test H0: p1j = p2j for j = 1, 2, 3 vs. Ha: p1j ≠ p2j for at least one j.  The estimated 
cell counts for men are 17.95, 8.82, and 13.23 and for women are 39.05, 19.18, 28.77, resulting in a test 
statistic of χ2 = 44.98.  With (2 – 1)(3 – 1) = 2 degrees of freedom, the P-value is < .001, which strongly 
suggests that H0 should be rejected. 

 
 
28. For the population of Cal Poly students, the hypotheses are H0: cell phone service provider and email 

service provider are independent, versus Ha: cell phone service provider and email service provider are not 
independent. 
 
The accompanying Minitab output shows that all expected counts are ≥ 5, so a chi-squared test is 
appropriate. The test statistic value is χ2 = 1.507 at df = (3–1)(3–1) = 4, with an associated P-value of .825. 
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Chi-Square Test: ATT, Verizon, Other  
 
Expected counts are printed below observed counts 
Chi-Square contributions are printed below expected counts 
 
         ATT  Verizon  Other  Total 
    1     28       17      7     52 
       25.26    18.42   8.32 
       0.298    0.110  0.209 
 
    2     31       26     10     67 
       32.54    23.74  10.72 
       0.073    0.216  0.048 
 
    3     26       19     11     56 
       27.20    19.84   8.96 
       0.053    0.036  0.464 
 
Total     85       62     28    175 
 
Chi-Sq = 1.507, DF = 4, P-Value = 0.825 

 
At any reasonable significance level, we would fail to reject H0. There is no evidence to suggest a 
relationship between cell phone and email providers for Cal Poly students. 

 
 
29.  

a. The null hypothesis is H0: p1j = p2j = p3j for j = 1, 2, 3, 4, where pij is the proportion of the ith 
population (natural scientists, social scientists, non-academics with graduate degrees) whose degree of 
spirituality falls into the jth category (very, moderate, slightly, not at all).   
 
From the accompanying Minitab output, the test statistic value is χ2 = 213.212 with df = (3–1)(4–1) = 
6, with an associated P-value of 0.000. Hence, we strongly reject H0. These three populations are not 
homogeneous with respect to their degree of spirituality. 

 
 

Chi-Square Test: Very, Moderate, Slightly, Not At All  
 
Expected counts are printed below observed counts 
Chi-Square contributions are printed below expected counts 
 
         Very  Moderate  Slightly  Not At All  Total 
    1      56       162       198         211    627 
        78.60    195.25    183.16      170.00 
        6.497     5.662     1.203       9.889 
 
    2      56       223       243         239    761 
        95.39    236.98    222.30      206.33 
       16.269     0.824     1.928       5.173 
 
    3     109       164        74          28    375 
        47.01    116.78    109.54      101.67 
       81.752    19.098    11.533      53.384 
 
Total     221       549       515         478   1763 
 
Chi-Sq = 213.212, DF = 6, P-Value = 0.000 
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b. We’re now testing H0: p1j = p2j for j = 1, 2, 3, 4 under the same notation. The accompanying Minitab 

output shows χ2 = 3.091 with df = (2–1)(4–1) = 3 and an associated P-value of 0.378. Since this is 
larger than any reasonable significance level, we fail to reject H0. The data provides no statistically 
significant evidence that the populations of social and natural scientists differ with respect to degree of 
spirituality.  

 
 
Chi-Square Test: Very, Moderate, Slightly, Not At All  
 
Expected counts are printed below observed counts 
Chi-Square contributions are printed below expected counts 
 
        Very  Moderate  Slightly  Not At All  Total 
    1     56       162       198         211    627 
       50.59    173.92    199.21      203.28 
       0.578     0.816     0.007       0.293 
 
    2     56       223       243         239    761 
       61.41    211.08    241.79      246.72 
       0.476     0.673     0.006       0.242 
 
Total    112       385       441         450   1388 
 
Chi-Sq = 3.091, DF = 3, P-Value = 0.378 

 
 
30. H0: the design configurations are homogeneous with respect to type of failure vs. Ha:  the design 

configurations are not homogeneous with respect to type of failure.   
 

ijÊ  1 2 3 4  

1 16.11 43.58 18.00 12.32 90 

2 7.16 19.37 8.00 5.47 40 

3 10.74 29.05 12.00 8.21 60 

 34 92 38 26 190 

( ) ( )2 2
2 20 16.11 5 8.21

... 13.253
16.11 8.21

χ
− −

= + + = .  With 6 df, 

440.14253.13592.12 2
6,025.

2
6,05. =<<= χχ , so .025 < P-value < .05.  Since the P -value is < .05, we 

reject H0. (If a smaller significance level were chosen, a different conclusion would be reached.) 
Configuration appears to have an effect on type of failure. 
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31.  

a. The accompanying table shows the proportions of male and female smokers in the sample who began 
smoking at the ages specified. (The male proportions were calculated by dividing the counts by the 
total of 96; for females, we divided by 93.) The patterns of the proportions seems to be different, 
suggesting there does exist an association between gender and age at first smoking. 
 

  Gender 
  Male Female 
 <16 0.26 0.11 
Age 16–17 0.25 0.34 
 18–20 0.29 0.18 
 >20 0.20 0.37 

 
b. The hypotheses, in words, are H0: gender and age at first smoking are independent, versus Ha: gender 

and age at first smoking are associated. The accompanying Minitab output provides a test statistic 
value of χ2 = 14.462 at df = (2–1)(4–1) = 3, with an associated P-value of 0.002. Hence, we would 
reject H0 at both the .05 and .01 levels. We have evidence to suggest an association between gender 
and age at first smoking. 

 
Chi-Square Test: Male, Female  
 
Expected counts are printed below observed counts 
Chi-Square contributions are printed below expected counts 
 
        Male  Female  Total 
    1     25      10     35 
       17.78   17.22 
       2.934   3.029 
 
    2     24      32     56 
       28.44   27.56 
       0.694   0.717 
 
    3     28      17     45 
       22.86   22.14 
       1.157   1.194 
 
    4     19      34     53 
       26.92   26.08 
       2.330   2.406 
 
Total     96      93    189 
 
Chi-Sq = 14.462, DF = 3, P-Value = 0.002 
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32. Let pi = the true eclosion rate under the ith duration (i = 1 for 0 days, …, i = 7 for 15 days). We wish to test 

the hypotheses H0: p1 = … = p7 vs. Ha: these seven true rates are not all equal. To apply the chi-squared test, 
form a 2x7 table with eclosion classified as yes or no: 
 

 0 1 2 3 5 10 15 
Eclosion 101 38 44 40 38 35 7 

No 19 3 3 4 8 7 3 
Total 120 41 47 44 46 42 10 

 
The expected count for the bottom right cell is 10(47)/350 < 5, but all other expected counts are ≥ 5. So, we 
will proceed with the chi-squared test. With the aid of software, the calculated test statistic is χ2 = 7.996; at 
df = (7 – 1)(2 – 1) = 6, the P-value is > .100 [software gives P-value = .238]. Thus, we fail to reject H0; the 
evidence suggests that it is at least plausible that eclosion rates do not depend exposure duration.  
 

33. 
( )2

2 2 2
2

ˆ ˆ ˆ2 ˆ2ˆ ˆ ˆ
ij ij ij ij ij ij ij

ij ij
ij ij ij

N E N E N E N
N E

E E E
χ

− − +
= ΣΣ = ΣΣ = ΣΣ − ΣΣ + ΣΣ , but ˆ

ij ijE N nΣΣ = ΣΣ = , so 

2
2

ˆ
ij

ij

N
n

E
χ = ΣΣ − .  This formula is computationally efficient because there is only one subtraction to be 

performed, which can be done as the last step in the calculation. 
 
 
34. Under the null hypothesis, we compute estimated cell counts by 

. . .. . . .... ..
.. . . .. 2ˆ ˆ ˆ ˆ ˆ j i j ki k

ijk ijk i j k

n n n nn ne np np p p n
n n n n

= = = =  

This is a 3x3x3 situation, so there are 27 cells.  Only the total sample size, n, is fixed in advance of the 
experiment, so there are 26 freely determined cell counts.  We must estimate p..1, p..2, p..3, p.1., p.2., p.3., p1.., 
p2.., and p3.., but .. . . .. 1i j kp p pΣ = Σ = Σ = , so only 6 independent parameters are estimated.  The rule for 
degrees of freedom now gives df = 26 – 6 = 20.  
In general, the degrees of freedom for independence in an IxJxK array equals  
(IJK – 1) – [(I – 1) + (J – 1) + (K – 1)] = IJK – (I+J+K) + 2. 

 

35. With pij denoting the common value of pij1, pij2, pij3, and pij4 under H0, n
n

p ij
ij

.ˆ =  and 
n
nn

E ijk
ijk

.ˆ = , where 

∑
=

=
4

1
.

k
ijkij nn  and ∑

=

=
4

1k
knn .  With four different tables (one for each region), there are 4(9 – 1) = 32 

freely determined cell counts.  Under H0, the nine parameters p11, …, p33 must be estimated, but 1=ΣΣ ijp , 
so only 8 independent parameters are estimated, giving χ2 df = 32 – 8 = 24. Note: this is really a test of 
homogeneity for 4 strata, each with 3x3=9 categories. Hence, df = (4 – 1)(9 – 1) = 24. 
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36.  

a.  
Observed   Estimated Expected 

13 19 28 60  12 18 30 
7 11 22 40  8 12 20 
20 30 50 100     

 
( ) ( ) 6806.

20
2022...

12
1213 22

2 =
−

++
−

=χ .  Because 605.46806. 2
2,10. =< χ , the P-value is greater than 

.10 and H0 is not rejected. 
 

b. Each observation count here is 10 times what it was in a, and the same is true of the estimated 
expected counts, so now χ2 = 6.806, and H0 is rejected.  With the much larger sample size, the 
departure from what is expected under H0, the independence hypothesis, is statistically significant – it 
cannot be explained just by random variation. 

 
c. The observed counts are .13n, .19n, .28n, .07n, .11n, .22n, whereas the estimated expected 

( )( )
=

n
nn 20.60.  .12n, .18n, .30n, .08n, .12n, .20n, yielding χ2 = .006806n.  H0 will be rejected at level .10 

iff 605.4006806. ≥n , i.e., iff 6.676≥n , so the minimum n = 677. 

 

Supplementary Exercises 
 
37. There are 3 categories here – firstborn, middleborn, (2nd or 3rd born), and lastborn.  With p1, p2, and p3 

denoting the category probabilities, we wish to test H0: p1 = .25, p2 = .50, p3 = .25 because p2 = P(2nd or 3rd 
born) = .25 + .25 = .50.  The expected counts are (31)(.25) = 7.75, (31)(.50) = 15.5, and 7.75, so 

( ) ( ) ( ) 65.3
75.7
75.78

5.15
5.1511

75.7
75.712 222

2 =
−

+
−

+
−

=χ .  At df = 3 – 1 = 2, 3.65 < 5.992 ⇒ P-value > .05 ⇒ H0 is 

not rejected.  The hypothesis of equiprobable birth order appears plausible. 
 
 
38. Let p1 = the true proportion of births under a new moon, p2 = the true proportion of births under a waxing 

crescent, and so on through p8 (there are 8 “phase” categories). If births occur without regard to moon 
phases, then the proportion of births under a new moon should simply be the proportion of all days that had 
a new moon; here, that’s 24/699 (since there were 699 days studied). Making the analogous calculations for 
the other 7 categories, the null hypothesis that births occur without regard to moon phases is 
 

H0: p1 = 24/699, p2 = 152/699, …, p8 = 152/699 
 
The alternative hypothesis is that at least one of these proportions is incorrect. The accompanying Minitab 
output shows a test statistic value of χ2 = 6.31108 with df = 8 – 1 = 7 and an associated P-value of 0.504. 
Hence, we fail to reject H0 at any reasonably significance level. On the basis of the data, there is no reason 
to believe that births are affected by phases of the moon. 
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Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Births  
 
                          Test            Contribution 
Category  Observed  Proportion  Expected     to Chi-Sq 
1             7680    0.034335    7649.2       0.12373 
2            48442    0.217454   48445.2       0.00021 
3             7579    0.034335    7649.2       0.64491 
4            47814    0.213162   47489.0       2.22410 
5             7711    0.034335    7649.2       0.49871 
6            47595    0.214592   47807.7       0.94654 
7             7733    0.034335    7649.2       0.91727 
8            48230    0.217454   48445.2       0.95561 
 
 
     N  DF   Chi-Sq  P-Value 
222784   7  6.31108    0.504 

 
 
39.  

a. For that top-left cell, the estimated expected count is (row total)(column total)/(grand total) = 
(189)(406)/(852) = 90.06. Next, the chi-squared contribution is (O – E)2/E = (83 – 90.06)2/90.06 =  
0.554. 
 

b. No: From the software output, the P-value is .023 > .01. Hence, we fail to reject the null hypothesis of 
“no association” at the .01 level. We have insufficient evidence to conclude that an association exists 
between cognitive state and drug status. [Note: We would arrive at a different conclusion for α = .05.] 

 
40.  

a. H0:  The proportion of Late Game Leader Wins is the same for all four sports; Ha:  The proportion of 
Late Game Leader Wins is not the same for all four sports.  With 3 df, the computed χ2 = 10.518, and 
the P-value < .015 < .05, we reject H0.  There appears to be a relationship between the late-game leader 
winning and the sport played. 

 
b. Quite possibly:  Baseball had many fewer late-game leader losses than expected. 

 
 
41. The null hypothesis H0: pij = pi. p.j states that level of parental use and level of student use are independent 

in the population of interest.  The test is based on (3 – 1)(3 – 1) = 4 df. 

Estimated expected counts 

119.3 57.6 58.1 235 
82.8 33.9 40.3 163 
23.9 11.5 11.6 47 
226 109 110 445 

 
The calculated test statistic value is χ2 = 22.4; at df = (3 – 1)(3 – 1) = 4, the P-value is <  .001, so H0 should 
be rejected at any reasonable significance level.  Parental and student use level do not appear to be 
independent. 
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42. The null hypothesis is H0: the distribution of the number of concussions is the same for soccer players, non-

soccer athletes, and non-athletes; the alternative hypothesis is that H0 is not true. As the data stands, the 
conditions for a chi-squared test of homogeneity aren’t met: the estimated expected cell count for (non-
athletes, ≥ 3 concussions) is ê = (53)(15)/240 = 3.31, which is less than 5. To cope with this, we can 
collapse the last two columns into one category: 

 # of Concussions 
 0 1 ≥ 2 
Soccer 45 25 21 
N-S Athletes 68 15 13 
Non-athletes 45 5 3 

 
The accompanying Minitab output provides a test statistic value of χ2 = 20.604 with df = (3–1)(3–1) = 4 
and an associated P-value of 0.000. Hence, we reject H0 at any reasonable significance level and conclude 
that the distribution of the number of concussions is not the same for the populations of soccer players, 
non-soccer athletes, and non-athletes. 
 
Chi-Square Test: 0, 1, 2+  
 
Expected counts are printed below observed counts 
Chi-Square contributions are printed below expected counts 
 
           0      1     2+  Total 
    1     45     25     21     91 
       59.91  17.06  14.03 
       3.710  3.693  3.464 
 
    2     68     15     13     96 
       63.20  18.00  14.80 
       0.365  0.500  0.219 
 
    3     45      5      3     53 
       34.89   9.94   8.17 
       2.928  2.453  3.272 
 
Total    158     45     37    240 
 
Chi-Sq = 20.604, DF = 4, P-Value = 0.000 

 
 
43. This is a test of homogeneity:  H0:  p1j = p2j = p3j for j = 1, 2, 3, 4, 5. The given SPSS output reports the 

calculated χ2 = 70.64156 and accompanying P-value (significance) of .0000.  We reject H0 at any 
significance level.  The data strongly supports that there are differences in perception of odors among the 
three areas. 

 
44. The accompanying table contains both observed and estimated expected counts, the latter in parentheses. 

   Age    

Want 127 
(131.1) 

118 
(123.3) 

77 
(71.7) 

61 
(55.1) 

41 
(42.8) 424 

Don’t 23 
(18.9) 

23 
(17.7) 

5 
(10.3) 

2 
(7.9) 

8 
(6.2) 61 

 150 141 82 63 49 485 
This gives χ2 = 11.60; at df = 4, the P-value is ~.020. At level .05, the null hypothesis of independence is 
rejected, though it would not be rejected at the level .01. 
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45. ( ) ( ) ( )( ) ( )22 2 2
1 10 10 1 1 10 2 201n np np n n n n p n np− = − = − − − = − .  Therefore 

( ) ( ) ( )

( )

2 2 2
2 1 10 2 20 1 10

10 20 2 10 20

10 20

22
1 10 21

10
10 20

ˆ
/

n np n np n np n n
np np n p p

p pn np z
n p p np p

χ
− − −  

= + = + 
 

−  = − ⋅ = =  
   

 

 
 
46.  

a.  
obs 22 10 5 11 
exp 13.189 10 7.406 17.405 

H0:  probabilities are as specified. 
Ha:  probabilities are not as specified. 

Test Statistic: ( ) ( ) ( ) ( )
405.17

405.1711
406.7
406.75

10
1010

189.13
189.1322 2222

2 −
+

−
+

−
+

−
=χ  

5.886 0 0.782 2.357 9.025= + + + = . At df = 4 – 1 = 3, .025 < P-value < .030. Therefore, at the .05 
level we reject H0.  The model postulated in the exercise is not a good fit. 
 

b.  
pi 0.45883 0.18813 0.11032 0.24272 

exp 22.024 9.03 5.295 11.651 
( ) ( ) ( ) ( )

651.11
651.1111

295.5
295.55

03.9
03.910

024.22
024.2222 2222

2 −
+

−
+

−
+

−
=χ  

1570332.0363746.0164353.1041971.0000262. =+++=  
With the same rejection region as in a, we do not reject the null hypothesis.  This model does provide a 
good fit. 
 

47.  
a. Our hypotheses are H0: no difference in proportion of concussions among the three groups v. Ha: there 

is a difference in proportion of concussions among the three groups.  

Observed Concussion 
No 

Concussion Total 
Soccer 45 46 91 

Non Soccer 28 68 96 
Control 8 45 53 
Total 81 159 240 

    

Expected Concussion 
No 

Concussion Total 
Soccer 30.7125 60.2875 91 

Non Soccer 32.4 63.6 96 
Control 17.8875 37.1125 53 
Total 81 159 240 
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( ) ( ) ( ) ( )
6.63

6.6368
4.32

4.3228
2875.60

2875.6046
7125.30

7125.3045 2222
2 −

+
−

+
−

+
−

=χ

( ) ( )2 28 17.8875 45 37.1125
17.8875 37.1125
− −

+ + = 19.1842.  The df for this test is (I – 1)(J – 1) = 2, so the P-value is 

less than .001 and we reject H0.  There is a difference in the proportion of concussions based on 
whether a person plays soccer. 

b. The sample correlation of r = -.220 indicates a weak negative association between “soccer exposure” 
and immediate memory recall. We can formally test the hypotheses H0: ρ = 0 vs Ha: ρ < 0.  The test 

statistic is 13.2
22.1

8922.

1

2
22

−=
−

−
=

−

−
=

r

nrt .  At significance level α = .01, we would fail to reject H0 

and conclude that there is no significant evidence of negative association in the population. 

c. We will test to see if the average score on a controlled word association test is the same for soccer and 
non-soccer athletes.  H0: μ1 = μ2 vs Ha: μ1 ≠ μ2.  Since the two sample standard deviations are very 
close, we will use a pooled-variance two-sample t test. From Minitab, the test statistic is t = –0.91, with 
an associated P-value of 0.366 at 80 df. We clearly fail to reject H0 and conclude that there is no 
statistically significant difference in the average score on the test for the two groups of athletes. 

d. Our hypotheses for ANOVA are H0: all means are equal vs Ha: not all means are equal.  The test 

statistic is 
MSE
MSTrf = .   

4659.3)35.19(.53)35.49(.96)35.30(.91 222 =−+−+−=SSTr 73295.1
2

4659.3
==MSTr  

2873.124)48(.52)87(.95)67(.90 222 =++=SSE  and 5244.
237

2873.124
==MSE .  

Now, 30.3
5244.
73295.1

==f .  Using df = (2,200) from Table A.9, the P-value is between .01 and .05.  At 

significance level .05, we reject the null hypothesis.  There is sufficient evidence to conclude that there 
is a difference in the average number of prior non-soccer concussions between the three groups. 

 
48.  

a. H0: p0 = p1 = … = p9 = .10 vs Ha: at least one pi ≠ .10, with df = 9. 
 
b. H0: pij = .01 for i and j = 0,1,2,…,9  vs Ha: at least one pij ≠ .01, with df = 99. 
 
c. For this test, the number of p’s in the hypothesis would be 105 = 100,000 (the number of possible 

combinations of 5 digits).  Using only the first 100,000 digits in the expansion, the number of non-
overlapping groups of 5 is only 20,000.  We need a much larger sample size! 

 
d. Based on these P-values, we could conclude that the digits of π behave as though they were randomly 

generated. 
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49. According to Benford’s law, the probability a lead digit equals x is given by log10(1 + 1/x) for x = 1, …, 9. 
Let pi = the proportion of Fibonacci numbers whose lead digit is i (i = 1, …, 9). We wish to perform a 
goodness-of-fit test H0: pi = log10(1 + 1/i) for i = 1, …, 9.  (The alternative hypothesis is that Benford’s 
formula is incorrect for at least one category.) The table below summarizes the results of the test. 

Digit 1 2 3 4 5 6 7 8 9 

Obs. # 25 16 11 7 7 5 4 6 4 

Exp. # 25.59 14.97 10.62 8.24 6.73 5.69 4.93 4.35 3.89 

Expected counts are calculated by npi = 85 log10(1 + 1/i). Some of the expected counts are too small, so 
combine 6 and 7 into one category (obs = 9, exp = 10.62); do the same to 8 and 9 (obs = 10, exp = 8.24).  

The resulting chi-squared statistic is χ2 = 
2 2(25 25.59)

25.5
(10 8.24)

8.9 24
−

+
−

+ = 0.92 at df = 7 – 1 = 6 (since 

there are 7 categories after the earlier combining). Software provides a P-value of .988!  

We certainly do not reject H0 — the lead digits of the Fibonacci sequence are highly consistent with 
Benford’s law.  
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CHAPTER 15 
 

Section 15.1 
 
1. Refer to Table A.13. 

a. With n = 12, P0(S+ ≥ 56) = .102. 
 

b. With n = 12, 61 < 62 < 64 ⇒ P0(S+ ≥ 62) is between .046 and .026. 
 

c. With n = 12 and a lower-tailed test, P-value = P0(S+ ≥ n(n + 1)/2 – s+) = P0(S+ ≥ 12(13)/2 – 20) =    
P0(S+ ≥ 58). Since 56 < 58 < 60, the P-value is between .055 and .102. 
 

d. With n = 14 and a two-tailed test, P-value = 2P0(S+ ≥ max{21, 14(15)/2 – 21}) = 2P0(S+ ≥ 84) = .025. 
 

e. With n = 25 being “off the chart,” use the large-sample approximation: 

( 1)(2 1) / 24
( 1) / 4 300 25(26) / 4

25(26)(51) / 24n n n
s n nz + − + −

= =
+ +

 = 3.7 ⇒ two-tailed P-value = 2P(Z ≥ 3.7) ≈ 0. 

 
2. With μ = the population mean expense ratio, our hypotheses are H0: μ = 1 versus Ha: μ > 1. For each of the 

20 values, calculate xi – 1, and then replace each value by the rank of |xi – 1|. For example, the first 
observation converts to 1.03 – 1 = .03; since |.03| = .03 turns out to be the smallest of the absolute values, 
its rank is 1. 
The test statistic value is s+ = 1 + 12 + 2 + 7 + 19 + 20 + 15 + 17 + 16 + 2 + 13 = 124. (Depending on how 
you deal with ties, you could also get s+ = 125.) With n = 20, since this test statistic value is less than the 
critical value c = 140 associated with the .101 level, P-value = P0(S+ ≥ 124) > .101. Therefore, we fail to 
reject H0 at the .10 level (or .05 or .01 level). The data do not provide statistically significant evidence that 
the population mean expense ratio exceeds 1%. 

 
 
3. We test H0: µ = 7.39 vs. Ha: µ ≠ 7.39, so a two tailed test is appropriate. The (xi – 7.39)’s are –.37, –.04,        

–.05, –.22, –.11, .38, –.30, –.17, .06, –.44, .01, –.29, –.07, and –.25, from which the ranks of the three 
positive differences are 1, 4, and 13. Thus s+ = 1 + 4 + 13 = 18, and the two-tailed P-value is given by   
2P0(S+ ≥ max{18, 14(15)/2 – 18}) = 2P0(S+ ≥ 87), which is between 2(.025) and 2(.010) or .05 and .02. In 
particular, since P-value < .05, H0 is rejected at level .05. 

 
 
4. The appropriate test is H0: µ = 30 vs. Ha: µ < 30.  The (xi – 30)’s are 0.6, 0.1, –14.4, –3.3, –2.9, –4.6, 5, 0.8, 

1.9, 23.2, –17.5, –6.8, –21.2, –5.1, 0.2. From these n = 15 values, s+ = 3 + 1 + 9 + 4 + 5 + 15 + 2 = 39. The 
lower-tailed P-value is P0(S+ ≥ 15(16)/2 – 39) = P0(S+ ≥ 81) > .104. Therefore, H0 cannot be rejected.  
There is not enough evidence to prove that the mean diagnostic time is less than 30 minutes at the 10% 
significance level. 
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5. The data are paired, and we wish to test H0: µD = 0 vs. Ha: µD ≠ 0.  

di –.3 2.8 3.9 .6 1.2 –1.1 2.9 1.8 .5 2.3 .9 2.5 

rank 1 10* 12* 3* 6* 5 11* 7* 2* 8* 4* 9* 
s+ = 10 + 12 + … + 9 = 72, so the 2-tailed P-value is 2P0(S+ ≥ max{72, 12(13)/2 – 72}) = 2P0(S+ ≥ 72) < 
2(.005) = .01. Therefore, H0 is rejected at level .05.   

 
 
6. The data in Ch. 9 Exercise 39 are paired, and we wish to test H0: µD = 0 vs. Ha: µD ≠ 0. Looking at the 

differences provided, the 11 positive values have a rank sum of s+ = 91 (the three negative values have 
ranks 1, 10, and 3, and the rank total with n = 14 is 105). The P-value is 2P0(S+ ≥ max{91, 14(15)/2 – 91}) 
= 2P0(S+ ≥ 91), which is between 2(.010) = .02 and 2(.005) = .01. Hence, at α = .05 we reject H0 and 
conclude that the true average difference between intake values is something other than zero. 

 
 
7. The data are paired, and we wish to test H0: µD = .20 vs. Ha: µD > .20 where µD = µoutdoor – µindoor.  Because 

n = 33, we’ll use the large-sample test.   
 

di di – .2 rank di di – .2 rank di di – .2 rank 
0.22 0.02 2 0.15 –0.05 5.5 0.63 0.43 23 
0.01 –0.19 17 1.37 1.17 32 0.23 0.03 4 
0.38 0.18 16 0.48 0.28 21 0.96 0.76 31 
0.42 0.22 19 0.11 –0.09 8 0.2 0 1 
0.85 0.65 29 0.03 –0.17 15 –0.02 –0.22 18 
0.23 0.03 3 0.83 0.63 28 0.03 –0.17 14 
0.36 0.16 13 1.39 1.19 33 0.87 0.67 30 
0.7 0.5 26 0.68 0.48 25 0.3 0.1 9.5 

0.71 0.51 27 0.3 0.1 9.5 0.31 0.11 11 
0.13 –0.07 7 -0.11 –0.31 22 0.45 0.25 20 
0.15 –0.05 5.5 0.31 0.11 12 –0.26 –0.46 24 

 

From the table, s+ = 424, so ( 1) / 4 424 280.5 143.5 2.56
55.96653( 1)(2 1) / 4 132.252

s nz
n n n

n+ − +
=

+
−

=
+

= = . The upper-tailed    

P-value is P(Z ≥ 2.56) = .0052 < .05, so we reject H0. There is statistically significant evidence that the true 
mean difference between outdoor and indoor concentrations exceeds .20 nanograms/m3. 

 
 
8. With μ = the true average alcohol content for port wine, our hypotheses are H0: μ = 18.5 vs. Ha: μ > 18.5. 

Using software, the sum of the ranks for the positive differences among the values (xi – 18.5) is s+ = 463. 
Using the large-sample approximation, the expected value and variance of S+ under H0 are n(n + 1)/4 = 
35(36)/4 = 315 and n(n + 1)(2n + 1)/24 = 3727.5. This corresponds to a P-value of 

2.42) 1 (2.42463 )
3727.

15
5

3 (P Z P Z−  =  ≥ = −Φ
 

≥ = .0078 

Since .0078 < .01, we reject H0 at the .01 level and conclude that the true average alcohol content for port 
wine exceeds 18.5. 
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9.  

R1 1 1 1 1 1 1 2 2 2 2 2 2 
R2 2 2 3 3 4 4 1 1 3 3 4 4 
R3 3 4 2 4 2 3 3 4 1 4 1 3 
R4 4 3 4 2 3 2 4 3 4 1 3 1 
D 0 2 2 6 6 8 2 4 6 12 10 14 
             

R1 3 3 3 3 3 3 4 4 4 4 4 4 
R2 1 1 2 2 4 4 1 1 2 2 3 3 
R3 2 4 1 4 1 2 2 3 1 3 1 2 
R 4 4 2 4 1 2 1 3 2 3 1 2 1 
D 6 10 8 14 16 18 12 14 14 18 18 20 

 
When H0 is true, each of the above 24 rank sequences is equally likely, which yields the distribution of D: 
 

d 0 2 4 6 8 10 12 14 16 18 20 
p(d) 1/24 3/24 1/24 4/24 2/24 2/24 2/24 4/24 1/24 3/24 1/24 

 
Then c = 0 yields α = 1/24 = .042 (too small) while c = 2 implies α = 1/24 + 3/24 = .167, and this is the 
closest we can come to achieving a .10 significance level. 

 
 

Section 15.2 
 
10. Refer to Table A.14. 

a. With m = 5, n = 6, upper-tailed P-value = P0(W ≥ 41) = .026. 
 

b. With m = 5, n = 6, lower-tailed P-value = P0(W ≥ 5(5 + 6 + 1) – 22) = P0(W ≥ 38) > .041. 
 

c. With m = 5, n = 6, two-tailed P-value = 2P0(W ≥ max{45, 5(5 + 6 + 1) – 45}) = 2P0(W ≥ 45) < 2(.004) 
= .008. 
 

d. First, w = 4 + 7 + … + 24 = 182. Next, since m = n = 12 is “off the chart,” use the large-sample test: 

( 1) /1
( 1) / 2 182

2 12(12)(25
12(25) / 2

) /12
w m m nz

mn m n
− + + −

= =
+ +

 = 1.85, P-value = P(Z ≥ 1.85) = .0322. 

 
11. The ordered combined sample is 163(y), 179(y), 213(y), 225(y), 229(x), 245(x), 247(y), 250(x), 286(x), and 

299(x), so w = 5 + 6 + 8 + 9 + 10 = 38.  With m = n = 5, Table A.14 gives P-value = P0(W ≥ 38), which is 
between .008 and .028. In particular, P-value < .05, so H0 is rejected in favor of Ha.   

 
 
12. Identifying x with pine (corresponding to the smaller sample size) and y with oak, we wish to test                  

H0: µ1 – µ2 = 0 vs. Ha: µ1 – µ2 ≠ 0.  The x ranks are 3 (for .73), 4 (for .98), 5 (for 1.20), 7 (for 1.33), 8 (for 
1.40), and 10 (for 1.52), so w = 37.  With m = 6 and n = 8, the two-tailed P-value is 2P0(W ≥ 37) > 2(.054) 
.108. Hence, we fail to reject H0.  
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13. Identifying x with unpolluted region (m = 5) and y with polluted region (n = 7), we wish to test the 

hypotheses H0: µ1 – µ2 = 0 vs. Ha: µ1 – µ2 < 0. The x ranks are 1, 5, 4, 6, 9, so w = 25. In this particular 
order, the test is lower-tailed, so P-value = P0(W ≥ 5(5 + 7 + 1) – 25) = P0(W ≥ 40) > .053. So, we fail to 
reject H0 at the .05 level: there is insufficient evidence to conclude that the true average fluoride level is 
higher in polluted areas. 

 
14. Let μ1 and μ2 denote the true average scores using these two methods. The competing hypotheses are        

H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 ≠ 0. With m = n = 18, we’ll use the large-sample version of the rank-sum 
test. The sum of the ranks for the first sample (Method 1) is   w = 4 + 5 + 6 + 13 + 15 + 17 + 18 + 19 + 22 + 
23 + 27 + 29 + 30 + 32 + 33 + 34 + 35 + 36 = 398. The expected value and variance of W under H0 are     
m(m + n + 1)/2 = 18(18 + 18 + 1)/2 = 333 and mn(m + n + 1)/12 = 999, respectively. The resulting z-value 
and two-tailed P-value are  

398 333
999

2.06z −
= = ; P-value = 2P(Z ≥ 2.06) = 2[1 – Φ(2.06)] = .0394 

This is a reasonably low P-value; in particular, we would reject H0 at the traditional .05 significance level. 
Thus, on the basis of the rank-sum test, we conclude the true average scores using these two methods are 
not the same. 

 
 

 
15. Let µ1 and µ2 denote true average cotanine levels in unexposed and exposed infants, respectively.  The 

hypotheses of interest are H0: µ1 – µ2 = –25 vs. H0: µ1 – µ2 < –25.   Before ranking, –25 is subtracted from 
each xi (i.e. 25 is added to each), giving 33, 36, 37, 39, 45, 68, and 136.  The corresponding x ranks in the 
combined set of 15 observations are 1, 3, 4, 5, 6, 8, and 12, from which w = 1 + 3 + … + 12 = 39. With m = 
7 and n = 8, P-value = P0(W ≥ 7(7 + 8 + 1) – 39) = P0(W ≥ 73) = .027. Therefore, H0 is rejected at the .05 
level.  The true average level for exposed infants appears to exceed that for unexposed infants by more than 
25 (note that H0 would not be rejected using level .01).   

 
 
16.  

a.  
x rank y rank 

0.43 2 1.47 9 
1.17 8 0.80 7 
0.37 1 1.58 11 
0.47 3 1.53 10 
0.68 6 4.33 16 
0.58 5 4.23 15 
0.50 4 3.25 14 
2.75 12 3.22 13 

    
We verify that w = sum of the ranks of the x’s = 41. 

 
b. We are testing H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 < 0.  The reported P-value (significance) is .0027, 

which is < .01 so we reject H0.  There is evidence that the distribution of good visibility response time 
is to the left (or lower than) that response time with poor visibility. 
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Section 15.3 
 
17. n = 8, so from Table A.15, a 95% CI (actually 94.5%) has the form ( ) ( )( ) ( ) ( )( )36 32 1 32 5 32, ,x x x x− + = .  It is easily 

verified that the 5 smallest pairwise averages are 5.0 5.0 5.00
2
+

= , 5.0 11.8 8.40
2
+

= , 5.0 12.2 8.60
2
+

= , 

5.0 17.0 11.00
2
+

= , and 5.0 17.3 11.15
2
+

=  (the smallest average not involving 5.0 is 

( )6
11.8 11.8 11.8

2
x +

= = ), and the 5 largest averages are 30.6, 26.0, 24.7, 23.95, and 23.80, so the confidence 

interval is (11.15, 23.80). 
 

18. With n = 14 and ( )1
105

2
n n +

= , from Table A.15 we see that c = 93 and the 99% interval is ( ) ( )( )13 93,x x .  

Subtracting 7 from each xi and multiplying by 100 (to simplify the arithmetic) yields the ordered values –5, 
2, 9, 10, 14, 17, 22, 28, 32, 34, 35, 40, 45, and 77.  The 13 smallest sums are –10, –3, 4, 4, 5, 9, 11, 12, 12, 

16, 17, 18, and 19, so ( )13
14.19 7.095

2
x = = , while the 13 largest sums are 154, 122, 117, 112, 111, 109, 99, 

91, 87, and 86, so ( )93
14.86 7.430

2
x = = .  The desired CI is thus (7.095, 7.430). 

 
19. First, we must recognize this as a paired design; the eight differences (Method 1 minus Method 2) are         

–0.33, –0.41, –0.71, 0.19, –0.52, 0.20, –0.65, and –0.14. With n = 8, Table A.15 gives c = 32, and a 95% CI 
for μD is (8(8 1)/2 32 1) (32) ),(x x+ − + = (5) (32),( )x x . 
Of the 36 pairwise averages created from these 8 differences, the 5th smallest is (5)x = –0.585, and the        
5th-largest (aka the 32nd-smallest) is (32)x = 0.025. Therefore, we are 94.5% confident the true mean 
difference in extracted creosote between the two solvents, μD, lies in the interval (–.585, .025).  

 
 
20. For n = 4 Table A.13 shows that a two tailed test can be carried out at level .124 or at level .250 (or, of 

course even higher levels), so we can obtain either an 87.6% CI or a 75% CI. With ( )1
10

2
n n +

= , the 87.6% 

interval is ( ) ( )( ) ( )1 10, .045,.177x x = . 

 
 
21. m = n = 5 and from Table A.16, c = 21 and the 90% (actually 90.5%) interval is ( ) ( )( )5 21,ij ijd d .  The five 

smallest xi – yj differences are –18, –2, 3, 4, 16 while the five largest differences are 136, 123, 120, 107, 87 
(construct a table like Table 15.5), so the desired interval is (16, 87). 

 
 
22. m = 6, n = 8, mn = 48, and from Table A.16 a 99% interval (actually 99.2%) requires c = 44 and the 

interval is ( ) ( )( )5 44,ij ijd d .  The five largest xi – yj differences are 1.52 – .48 = 1.04, 1.40 – .48 = .92,            

1.52 – .67 = .85, 1.33 – .48 = .85, and 1.40 – .67 = .73, while the five smallest are –1.04, –.99, –.83, –.82, 
and –.79, so the confidence interval for µ1 – µ2 (where 1 = pine and 2 = oak) is (–.79, .73). 
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Section 15.4 
 
23. Below we record in parentheses beside each observation the rank of that observation in the combined 

sample. 
 

1: 5.8(3) 6.1(5) 6.4(6) 6.5(7) 7.7(10) r1. = 31  

2: 7.1(9) 8.8(12) 9.9(14) 10.5(16) 11.2(17) r2. = 68 

3: 5.1(1) 5.7(2) 5.9(4) 6.6(8) 8.2(11) r3. = 26 

4: 9.5(13) 1.0.3(15) 11.7(18) 12.1(19) 12.4(20) r4. = 85 
 

The computed value of k is 
( ) ( )

2 2 2 212 31 68 26 85 3 21 14.06
20 21 5

k
 + + +

= − = 
 

. At 3 df, the P-value is < 

.005, so we reject H0.   
 
 
24. After ordering the 9 observation within each sample, the ranks in the combined sample are 

1: 1 2 3 7 8 16 18 22 27 r1. = 104   

2: 4 5 6 11 12 21 31 34 36 r2. = 160  

3: 9 10 13 14 15 19 28 33 35 r3. = 176  

4: 17 20 23 24 25 26 29 30 32 r4. = 226  
 

The computed k is 
( ) ( )

2 2 2 212 104 160 176 226 3 37 7.587
36 37 5

k
 + + +

= − = 
 

; at 3 df, the corresponding      

P-value is slightly more than .05 (since 7.587 > 7.815). Therefore, 0 1 2 3 4:H µ µ µ µ= = =  cannot be rejected 
at the .05 level (but only barely).  

 
 
25. The ranks are 1, 3, 4, 5, 6, 7, 8, 9, 12, 14 for the first sample; 11, 13, 15, 16, 17, 18 for the second; 2, 10, 

19, 20, 21, 22 for the third; so the rank totals are 69, 90, and 94. 

( ) ( )
2 2 212 69 90 94 3 23 9.23

22 23 10 6 5
k

 
= + + − = 

 
; at 2 df, the P-value is roughly .01. Therefore, we reject 

0 1 2 3:H µ µ µ= =  at the .05 level.   
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26.  

 1 2 3 4 5 6 7 8 9 10 ir  2
ir  

A 2 2 2 2 2 2 2 2 2 2 20 400 

B 1 1 1 1 1 1 1 1 1 1 10 100 

C 4 4 4 4 3 4 4 4 4 4 39 1521 

D 3 3 3 3 4 3 3 3 3 3 31 961 

            2982 

The computed value of Fr is 
( )( ) ( ) ( )( )12 2982 3 10 5 28.92

4 10 5
− = . At 3 df, P-value < .005, and so H0 is 

rejected. 
 
 
27.  

 1 2 3 4 5 6 7 8 9 10 ir  2
ir  

I 1 2 3 3 2 1 1 3 1 2 19 361 

H 2 1 1 2 1 2 2 1 2 3 17 289 

C 3 3 2 1 3 3 3 2 3 1 24 576 

            1226 

The computed value of Fr is 
( )( ) ( ) ( )( )12 1226 3 10 4 2.60

10 3 4
− = . At 2 df, P-value > .10, and so we don’t 

reject H0 at the .05 level. 
 
 

Supplementary Exercises 
 
28. The Wilcoxon signed-rank test will be used to test H0: µD = 0 vs. Ha: µD ≠ 0, where µD = the true mean 

difference between expected rate for a potato diet and a rice diet.  The di’s are (in order of magnitude) .16, 
.18, .25, –.56, .60, .96, 1.01, and –1.24, so s+ = 1 + 2 + 3 + 5 + 6 + 7 = 24. With n = 8, the two tailed P-
value is > 2(.098) = .196 from Table A.13. Therefore, H0 is not rejected.  

 
 
29. Friedman’s test is appropriate here.  It is easily verified that 1. 28r = , 2. 29r = , 3. 16r = , 4. 17r = , from 

which the defining formula gives fr = 9.62 and the computing formula gives fr = 9.67. Either way, at 3 df 
the P-value is < .025, and so we reject 0 1 2 3 4:H α α α α= = = = 0 at the .05 level. We conclude that there are 
effects due to different years.   
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30. The Kruskal-Wallis test is appropriate for testing 0 1 2 3 4:H µ µ µ µ= = = .   

Treatment ranks ir  

I 4 1 2 3 5 15 

II 8 7 10 6 9 40 

III 11 15 14 12 13 65 

IV 16 20 19 17 18 90 
       

.86.1763
5

810042251600225
420
12

=−



 +++

=k   At 3 df, P-value < .005, so we reject H0.  

 
 
31. From Table A.16, m = n = 5 implies that c = 22 for a confidence level of 95%, so 

1 25 22 1 4mn c− + = − = = .  Thus the confidence interval extends from the 4th smallest difference to the 
4th largest difference.  The 4 smallest differences are –7.1, –6.5, –6.1, –5.9, and the 4 largest are –3.8, –3.7, 
–3.4, –3.2, so the CI is (–5.9, –3.8). 

 
 
32.  

a. We’re testing 0 1 2: 0H µ µ− =  vs  1 2: 0aH µ µ− ≠ . 
Gait D L L D D L L 
Obs .85 .86 1.09 1.24 1.27 1.31 1.39 
Gait D L L L D D  
obs 1.45 1.51 1.53 1.64 1.66 1.82  

 
1 4 5 8 12 13 43w = + + + + + = , and the two-tailed P-value is 2P0(W ≥ 43) > 2(.051) = .102.  Because 

the P-value is > .05, we fail to reject H0 and conclude there is no statistically significant difference 
between the two means. 

 
b.  

Differences  
 Lateral Gait 
  .86 1.09 1.31 1.39 1.51 1.53 1.64 
 .85 .01 .24 .46 .54 .66 .68 .79 

Diagonal 1.24 –.38 –.15 .07 .15 .27 .29 .40 
gait 1.27 –.41 –.18 .04 .12 .24 .26 .37 

 1.45 –.59 –.36 –.14 –.06 .06 .08 .19 
 1.66 –.80 –.57 –.35 –.27 –.15 –.13 –.02 
 1.82 –.96 –.73 –.51 –.43 –.31 –.29 –.18 

 
From Table A.16, c = 35 and mn – c + 1 = 8, giving (–.41, .29) as the CI. 

 



Chapter 15:  Distribution-Free Procedures 

 432 

 
33.   

a. With “success” as defined, then Y is binomial with n = 20.  To determine the binomial proportion p, we 
realize that since 25 is the hypothesized median, 50% of the distribution should be above 25, thus 
when H0 is true p = .50.  The upper-tailed P-value is P(Y ≥ 15 when Y ~ Bin(20, .5)) = 1 – B(14; 20, .5) 
= .021. 

 
b. For the given data, y = (# of sample observations that exceed 25) = 12. Analogous to a, the P-value is 

then P(Y ≥ 12 when Y ~ Bin(20, .5)) = 1 – B(11; 20, .5) = .252. Since the P-value is large, we fail to 
reject H0 — we have insufficient evidence to conclude that the population median exceeds 25. 

 
 
34.  

a. Using the same logic as in Exercise 33, ( )5 .021P Y ≤ = , and ( )15 .021P Y ≥ = , so the significance 
level is α = .042. 

 
b. The null hypothesis will not be rejected if the median is between the 6th smallest observation in the 

data set and the 6th largest, exclusive. (If the median is less than or equal to 14.4, then there are at least 
15 observations above, and we reject H0.  Similarly, if any value at least 41.5 is chosen, we have 5 or 
less observations above.)  Thus with a confidence level of 95.8%, the population median lies between 
14.4 and 41.5. 

 
 
35.  

Sample: y x y y x x x y y 
Observations: 3.7 4.0 4.1 4.3 4.4 4.8 4.9 5.1 5.6 

Rank: 1 3 5 7 9 8 6 4 2 
 

The value of W′ for this data is 3 6 8 9 26w′ = + + + = . With m = 4 and n = 5, he upper-tailed P-value is 
P0(W ≥ 26) > .056. Thus, H0 cannot be rejected at level .05. 
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36. The only possible ranks now are 1, 2, 3, and 4.  Each rank triple is obtained from the corresponding x 

ordering by the “code” 1 = 1, 2 = 2, 3 = 3, 4 = 4, 5 = 3, 6 = 2, 7 = 1 (so e.g. the x ordering 256 corresponds 
to ranks 2, 3, 2). 

 
x ordering ranks w′′ x ordering ranks w′′ x ordering ranks w′′ 

123 123 6 156 132 6 267 221 5 
124 124 7 157 131 5 345 343 10 
125 123 6 167 121 4 346 342 9 
126 122 5 234 234 9 347 341 8 
127 121 4 235 233 8 356 332 8 
134 134 8 236 232 7 357 331 7 
135 133 7 237 231 6 367 321 6 
136 132 6 245 243 9 456 432 9 
137 131 5 246 242 8 457 431 8 
145 143 8 247 241 7 467 421 7 
146 142 7 256 232 7 567 321 6 
147 141 6 257 231 6    

 
Since when H0 is true the probability of any particular ordering is 1/35, we can easily obtain the null 
distribution of W′′.  
 

w′′ 4 5 6 7 8 9 10 
p(w′′) 2/35 4/35 9/35 8/35 7/35 4/35 1/35 

 
 
In particular, P(W′′ ≥ 9) = 4/35 + 1/35 = 1/7 ≈ .14. 
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CHAPTER 16 
Section 16.1 
 
1. All ten values of the quality statistic are between the two control limits, so no out-of-control signal is 

generated. 
 
 
2. All ten values are between the two control limits.  However, it is readily verified that all but one plotted 

point fall below the center line (at height .04975).  Thus even though no single point generates an out-of-
control signal, taken together, the observed values do suggest that there may be a decrease in the average 
value of the quality statistic.  Such a “small” change is more easily detected by a CUSUM procedure (see 
section 16.5) than by an ordinary chart. 

 
 
3. P(10 successive points inside the limits) = P(1st inside) x P(2nd inside) x…x P(10th inside) = (.998)10 = 

.9802.   P(25 successive points inside the limits) = (.998)25 = .9512.  (.998)52 = .9011, but (.998)53 = .8993, 
so for 53 successive points the probability that at least one will fall outside the control limits when the 
process is in control is 1 - .8993 = .1007 > .10. 

 
4.  

a. With X ~ N(3.04, .02), the probability X stays within the spec limits is P(2.9 ≤ X ≤ 3.1) = 
3.1 3.04 2.9 3.04

.02 .02
− −   Φ −Φ   

   
= Φ(3) – Φ(–7) ≈ .9987 – 0 = .9987. 

 
b. With X ~ N(3.00, .05), the probability X stays within the spec limits is P(2.9 ≤ X ≤ 3.1) = 

3.1 3.00 2.9 3.00
.05 .05
− −   Φ −Φ   

   
= Φ(2) – Φ(–2) = .9772 – .0228 = .9544. This is smaller than the 

probability in part (a): even though the mean is now exactly halfway between the spec limits (which is 
often desirable), the greatly increased variability makes it less likely for a cork’s diameter to breach the 
spec limits. 

 
5.  

a. For the case of 4(a), with σ = .02, Cp = USL LSL 3.1 2.9
6 6(.02)σ
− −

= = 1.67. This is indeed a very good 

capability index. In contrast, the case of 4(b) with σ = .05 has a capability index of Cp = 3.1 2.9
6(.05)
− = 

0.67. This is quite a bit less than 1, the dividing line for “marginal capability.” 
 

b. For the case of 4(a), with μ = 3.04 and σ = .02, USL 3.1 3.04
3 3(.02)

µ
σ
− −

= = 1 and  3.04 2LSL .9
3 3(.02)

µ
σ

−−
= = 

2.33, so Cpk = min{1, 2.33} = 1.  

For the case of 4(b), with μ = 3.00 and σ = .05, USL 3.1 3.00
3 3(.05)

µ
σ
− −

= = .67 and 3.00 2LSL .9
3 3(.05)

µ
σ

−−
= = 

.67, so Cpk = min{.67, .67} = .67. Even using this mean-adjusted capability index, process (a) is more 
“capable” than process (b), though Cpk for process (a) is now right at the “marginal capability” 
threshold. 
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c. In general, Cpk ≤ Cp, and they are equal iff μ = LSL USL
2
+ , i.e. the process mean is the midpoint of the 

spec limits. To demonstrate this, suppose first that μ = LSL USL
2
+ . Then 

USL USL 2USL(LSL USL) / 2 (LSL USL) LSL
6

U L
3 3 6

Sµ
σ σ σ σ
− − − −

= = =
+ + = Cp, and similarly 

L
3
LSµ
σ

− = Cp. In that case, Cpk = min{Cp, Cp} = Cp. 

Otherwise, suppose μ is closer to the lower spec limit than to the upper spec limit (but between the 

two), so that μ – LSL < USL – μ. In such a case, Cpk =
L

3
LSµ
σ

− . However, in this same case μ < 

LSL USL
2
+ , from which L

3
LSµ
σ

− < (LSL USL) / 2 L L
3

S
σ

+ − = USL LSL
6σ
− = Cp. That is, Cpk < Cp. 

Analogous arguments for all other possible values of μ also yield Cpk < Cp. 
 

Section 16.2 
 
6. For Z, a standard normal random variable, ( ) .995P c Z c− ≤ ≤ =  implies that 

( ) ( ) .005.995 .9975
2

c P Z cΦ = ≤ = + = .  Table A.3 then gives c = 2.81.  The appropriate control limits are 

therefore 2.81µ σ± . 
 
 
7.  

a. P(point falls outside the limits when 0 .5µ µ σ= + ) 0 0 0
3 31 when .5P X

n n
σ σµ µ µ µ σ = − − < < + = + 

 
 

( )1 3 .5 3 .5P n Z n= − − − < < −    ( )1 4.12 1.882 1 .9699 .0301P Z= − − < < = − = . 

 

b. 0 0 0
3 31 when P X

n n
σ σµ µ µ µ σ − − < < + = − 

 
 ( )1 3 3P n Z n= − − + < < +  

( )1 .76 5.24 .2236P Z= − − < < =  
 
c. ( ) ( )1 3 2 3 2 1 7.47 1.47 .9292P n Z n P Z− − − < < − = − − < < − =  

8. The limits are ( )( )3 .6
13.00 13.00 .80

5
± = ± , from which LCL = 12.20 and UCL = 13.80.  Every one of the 

22 x  values is well within these limits, so the process appears to be in control with respect to location. 
 
 
9. 12.95x =  and .526s = , so with 5 .940a = , the control limits are 

.52612.95 3 12.95 .75 12.20,13.70
.940 5

± = ± = .  Again, every point ( )x  is between these limits, so there is no 

evidence of an out-of-control process. 
 
 



Chapter 16:  Quality Control Methods 

 436 

10. From the data, x  = 12.9888 and r  = 0.1032. With n = 4 the control limits are 

4

0.10323 12.9888 3
2.058(2)4

rx
b

± ⋅ = ±  = 12.9136 and 13.0640. Based on these limits, the process is not in 

control: 3x = 13.0675 > UCL, 18x  = 13.0725 > UCL, and 25x = 12.905 < LCL. 
 
 

11. 2317.07 96.54
24

x = =  , 1.264s = , and 6 .952a = , giving the control limits 

1.26496.54 3 96.54 1.63 94.91,98.17
.952 6

± = ± = .  The value of x on the 22nd day lies above the UCL, so the 

process appears to be out of control at that time. 
 
 

12. Now 2317.07 98.34 96.47
23

x −
= =  and 30.34 1.60 1.250

23
s −
= = , giving the limits 

1.25096.47 3 96.47 1.61 94.86,98.08
.952 6

± = ± = .  All 23 remaining x values are between these limits, so no 

further out-of-control signals are generated. 
 
 
13.  

a. 0 0 0
2.81 2.81  when P X

n n
σ σµ µ µ µ − < < + = 

 
= P(–2.81 < Z < 2.81) = .995, so the probability that a 

point falls outside the limits is .005 and 1ARL 200
.005

= = . 

 

b. P(a point is inside the limits) = 0 0 0
2.81 2.81  when P X

n n
σ σµ µ µ µ σ − < < + = + 

 
= … = 

( )2.81 2.81P n Z n− − < < − = P(–4.81 < Z < .81) [when n = 4] ≈ Φ(.81) = .7910 ⇒ 

p = P(a point is outside the limits) = 1 – .7910 = .209 ⇒ ARL = 1
.2090

 = 4.78.  

 
c. Replace 2.81 with 3 above. For a, P(–3 < Z < 3) = .9974, so p = 1 – .9974 = .0026 and 

1ARL 385
.0026

= = for an in-control process. When 0µ µ σ= +  as in b, the probability of an out-of-

control point is 1 – P(–3 – n < Z < 3 – n ) = 1 – P(–5 < Z < 1) ≈ 1 – Φ(1) = .1587, so 
1ARL 6.30

.1587
= = . 

 



Chapter 16:  Quality Control Methods 

 437 

 
14. An x  control chart from Minitab appears below. Since the process never breaches the ± 3σ limits, the 

process is in control. Applying the supplemental rules, there are no alerts: it is never the case that (1) two 
out of three successive points fall outside 2σ limits on the same side, (2) four out of five successive points 
fall outside 1σ limits on the same side, or (3) eight successive points fall on the same side of the center line. 

 

15131197531

59.70

59.69

59.68

59.67

59.66

59.65

59.64

Sample

Sa
m

pl
e 

M
ea

n

__
X=59.66828

+3SL=59.69450

-3SL=59.64207

+2SL=59.68576

-2SL=59.65080

+1SL=59.67702

-1SL=59.65954

 
 
 

15. 95.12=x , IQR = .4273, 990.5 =k .  The control limits are .427312.95 3 12.37,13.53
.990 5

± = . 

 

Section 16.3 
 

16. 895.4=Σ is  and 2040.
24
895.4

==s .  With a5 = .940, the lower control limit is zero and the upper 

limit is 
( ) ( )

4261.2221.2040.
940.

940.12040.3
2040.

2

=+=
−

+ .  Every si is between these limits, so the 

process appears to be in control with respect to variability. 
 
 
17.   

a. 85.2 2.84
30

r = = , b4 = 2.058, and c4 = .880. Since n = 4, LCL = 0 and UCL 

( )( ) 48.664.384.2
058.2

84.2880.384.2 =+=+= . 

 
b. 3.54r = , 844.28 =b , and 820.8 =c , and the control limits are 

( )( )3 .820 3.54
3.54 3.54 3.06 .48,6.60

2.844
± = ± = . 
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18. Let y x= . For example, the transformed data at des dim = 200 are 3.74166, 5.56776, and 3.46410, from 

which 1y = 4.25784, r1 = 2.10366, and s1 = 1.14288. Continuing these calculations for all k = 17 rows 
provides y = 3.9165, r = 2.272, and s = 1.160.  

Start with an S chart. Since n = 3 ≤ 5, LCL = 0. UCL = 2
3 33 1 /s s a a+ −  = 

211 .886 / .88.16 3(1.16) 6−+ = 2.981. Since all 17 si values are between 0 and 2.981, the process variation 
(as measured by standard deviation) is in control. 
Next, make an R chart. Since n = 3 ≤ 6, LCL = 0. UCL = 3 33 /r c r b+ = 2.272 + 3(.888)(2.272)/1.693 = 
5.847. Since all 17 ri values are between 0 and 5.847, the process variation (as measured by range) is in 
control 
Making an X -chart (really, a Y -chart) with control limits based on the sample ranges, we have CL = 

2.2723 3.9165 3
1.693 3n

ry
b n

± ⋅ = ± ⋅ = 3.9165 ± 2.3244 = 1.59, 6.24. That is, we have LCL = 1.59 and UCL 

= 6.24. Since all 17 iy  values are between these control limits, the process is in statistical control. 
 
19. 2642.1=s , 952.6 =a , and the control limits are 

( ) ( )
484.2,045.2194.12642.1

952.
952.12642.13

2642.1
2

=±=
−

± .  The smallest sI is s20 = .75, and the largest 

is s12 = 1.65, so every value is between .045 and 2.434.  The process appears to be in control with respect to 
variability. 

 
 

20. 2 39.9944isΣ =  and 2 39.9944 1.6664
24

s = = , so LCL =  ( )( )1.6664 .210
.070

5
= , and UCL = 

( )( )1.6664 20.515
6.837

5
= .  The smallest s2 value is ( )22

20 .75 .5625s = = and the largest is 

( )22
12 1.65 2.723s = = , so all 2

is ’s are between the control limits. 
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Section 16.4 
 

21. ˆ ipp
k

= Σ  where 11 ... 578ˆ ... 5.78
100

k k
i

x x xxp
n n n

+ +
Σ = + + = = = .  Thus 5.78 .231

25
p = = . 

a. The control limits are ( )( ).231 .769
.231 3 .231 .126 .105,.357

100
± = ± = . 

 

b. 13 .130
100

= , which is between the limits, but 39 .390
100

= , which exceeds the upper control limit and 

therefore generates an out-of-control signal. 
 
 

22. 567ixΣ = , from which 
( )( )

567 .0945
200 30

ixp
nk
Σ

= = = .  The control limits are 

( )( ).0945 .9055
.0945 3 .0945 .0621 .0324,.1566

200
± = ± = .  The smallest xi is x7 = 7, with 7

7ˆ .0350
200

p = = .  

This (barely) exceeds the LCL.  The largest xi is x5 = 37, with 5
37ˆ .185
200

p = = .  Thus 5ˆ .1566p UCL> = , 

so an out-of-control signal is generated.  This is the only such signal, since the next largest xi is x25 = 30, 

with 25
30ˆ .1500
200

p UCL= = < . 

 
 

23. LCL > 0 when ( )1
3

p p
p

n
−

> , i.e. (after squaring both sides) ( )250 9 1p p p> − , i.e. ( )50 3 1p p> − , i.e. 

353 3 .0566
53

p p> ⇒ = = . 

 
 
24. The suggested transformation is ( )1( ) sin X

nY h X −= = , with approximate mean value ( )1sin p−  and 

approximate variance 
n4

1
.  ( ) ( )11 1sin sin .050 .2255x

n
− −= =  (in radians), and the values of 

( )1sin ix
niy −=  for i = 1, 2, 3, …, 30 are  

 
0.2255 0.2367 0.2774 0.3977 0.3047 0.3537 0.3381 0.2868 
0.3537 0.3906 0.2475 0.2367 0.2958 0.2774 0.3218 0.3218 
0.4446 0.2868 0.2958 0.2678 0.3133 0.3300 0.3047 0.3835 
0.1882 0.3047 0.2475 0.3614 0.2958 0.3537   

These give 9.2437iyΣ =  and .3081y = .  The control limits are 
1 1

4 8003 .3081 3 .3081 .1091 .2020,.4142ny ± = ± = ± = .  In contrast to the result of exercise 20, there is now 
one point below the LCL (.1882 < .2020) as well as one point above the UCL. 
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25. 102ixΣ = , 4.08x = , and ( )3 4.08 6.06 2.0,10.1x x± = ± ≈ − .  Thus LCL = 0 and UCL = 10.1.  Because 
no xi exceeds 10.1, the process is judged to be in control. 

 
 
26. 3 0x x− <  is equivalent to 3x < , i.e. 9x < . 
 
 

27. With i
i

i

xu
g

= , the iu ’s are 3.75, 3.33, 3.75, 2.50, 5.00, 5.00, 12.50, 12.00, 6.67, 3.33, 1.67, 3.75, 6.25, 4.00, 

6.00, 12.00, 3.75, 5.00, 8.33, and 1.67 for i = 1, …, 20, giving 5.5125u = .  For .6ig = , 

3 5.5125 9.0933
i

uu
g

± = ± , LCL = 0, UCL = 14.6. For .8ig = , 3 5.5125 7.857
i

uu
g

± = ± , LCL = 0, 

UCL = 13.4. For 1.0ig = , 3 5.5125 7.0436
i

uu
g

± = ± , LCL = 0, UCL = 12.6.  Several ui’s are close to 

the corresponding UCL’s but none exceed them, so the process is judged to be in control. 
 
 
28. 2i iy x=  and the yi’s are 3.46, 5.29, 4.47, 4.00, 2.83, 5.66, 4.00, 3.46, 3.46, 4.90, 5.29, 2.83, 3.46, 2.83, 

4.00, 5.29, 3.46, 2.83, 4.00, 4.00, 2.00, 4.47, 4.00, and 4.90 for i = 1, …, 25, from which 98.35iyΣ = and 
3.934y = .  Thus 3 3.934 3 .934,6.934y ± = ± = .  Since every yi is well within these limits it appears that 

the process is in control. 
 
 
Section 16.5 
 
29. 0 16µ = , 0.05

2
k ∆
= = , .20h = , ( )( )1max 0, 16.05i i id d x−= + − , ( )( )1max 0, 15.95i i ie e x−= + − . 

i 16.05ix −  di 15.95ix −  ei 
1 –0.058 0 0.024 0 
2 0.001 0.001 0.101 0 
3 0.016 0.017 0.116 0 
4 –0.138 0 –0.038 0.038 
5 –0.020 0 0.080 0 
6 0.010 0.010 0.110 0 
7 –0.068 0 0.032 0 
8 –0.151 0 –0.054 0.054 
9 –0.012 0 0.088 0 
10 0.024 0.024 0.124 0 
11 –0.021 0.003 0.079 0 
12 –0.115 0 –0.015 0.015 
13 –0.018 0 0.082 0 
14 –0.090 0 0.010 0 
15 0.005 0.005 0.105 0 
     

For no time r is it the case that dr > .20 or that er > .20, so no out-of-control signals are generated. 
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30. 0 .75µ = , 0.001
2

k ∆
= = , h = .003, ( )( )1max 0, .751i i id d x−= + − , ( )( )1max 0, .749i i ie e x−= + − . 

 
i .751ix −  di .749ix −  ei 
1 –.0003 0 .0017 0 
2 –.0006 0 .0014 0 
3 –.0018 0 .0002 0 
4 –.0009 0 .0011 0 
5 –.0007 0 .0013 0 
6 .0000 0 .0020 0 
7 –.0020 0 .0000 0 
8 –.0013 0 .0007 0 
9 –.0022 0 –.0002 .0002 
10 –.0006 0 .0014 0 
11 .0006 .0006 .0026 0 
12 –.0038 0 –.0018 .0018 
13 –.0021 0 –.0001 .0019 
14 –.0027 0 –.0007 .0026 
15 –.0039 0 –.0019 .0045* 
16 –.0012 0 .0008 .0037 
17 –.0050 0 –.0030 .0067 
18 –.0028 0 –.0008 .0075 
19 –.0040 0 –.0020 .0095 
20 –.0017 0 .0003 .0092 
21 –.0048 0 –.0028 .0120 
22 –.0029 0 –.0009 .0129 

 
Clearly 15 .0045 .003e h= > = , suggesting that the process mean has shifted to a value smaller than the 
target of .75. 

 
 
31. Connecting 600 on the in-control ARL scale to 4 on the out-of-control scale and extending to the k′ scale 

gives k′ = .87.  Thus / 2 .002
/ .005 /

k
n nσ

∆′ = =  from which 2.175 4.73n n s= ⇒ = = .  Then connecting .87 

on the k′ scale to 600 on the out-of-control ARL scale and extending to h′ gives h′ = 2.8, so 

( ) ( ).0052.8 2.8 .00626
5

h
n
σ   = = =   

   
. 

 
 

32. In control ARL = 250, out-of-control ARL = 4.8, from which / 2 / 2.7
2/ /
nk

n n
σ

σ σ
∆′ = = = = .  So 

1.4 1.96 2n n= ⇒ = ≈ .  Then h′ = 2.85, giving ( )2.85 2.0153h
n
σ σ = = 

 
. 
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Section 16.6 
 
33. For the binomial calculation, n = 50 and we wish 

( ) ( ) ( ) ( )50 49 480 1 250 50 50
2 1 1 1

0 1 2
P X p p p p p p     

≤ = − + − + −     
     

  when p = .01, .02, …, .10.  For the 

hypergeometric calculation, ( )

500 500 500
0 50 1 49 2 48

2
500 500 500
50 50 50

M M M M M M

P X

− − −        
        
        ≤ = + +

     
     
     

, to be 

calculated for M = 5, 10, 15, …, 50.  The resulting probabilities appear below. 
 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

Hypg. .9919 .9317 .8182 .6775 .5343 .4047 .2964 .2110 .1464 .0994 

Bin. .9862 .9216 .8108 .6767 .5405 .4162 .3108 .2260 .1605 .1117 

 
 

34. ( ) ( ) ( ) ( ) ( )50 49 50 490 150 50
1 1 1 1 50 1

0 1
P X p p p p p p p   

≤ = − + − = − + −   
   

  

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

( )1≤XP  .9106 .7358 .5553 .4005 .2794 .1900 .1265 .0827 .0532 .0338 

 
 

35. ( ) ( ) ( ) ( )100 99 980 1 2100 100 100
2 1 1 1

0 1 2
P X p p p p p p     

≤ = − + − + −     
     

 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

( )2≤XP  .9206 .6767 .4198 .2321 .1183 .0566 .0258 .0113 .0048 .0019 

 
For values of p quite close to 0, the probability of lot acceptance using this plan is larger than that for the 
previous plan, whereas for larger p this plan is less likely to result in an “accept the lot” decision (the 
dividing point between “close to zero” and “larger p” is someplace between .01 and .02).  In this sense, the 
current plan is better. 

 
 

36. LTPD .07 3.5 3.55
AQL .02

= = ≈ , which appears in the 1

2

p
p

 column in the c = 5 row.  Then 

1

1

2.613 130.65 131
.02

npn
p

= = = ≈ .   

P(X > 5 when p = .02) = ( ) ( )
5

131

0

131
1 .02 .98 .0487 .05x x

x x
−

=

 
− = ≈ 

 
∑    

P(X ≤ 5 when p = .07) = ( ) ( )
5

131

0

131
.07 .93 .0974 .10x x

x x
−

=

 
= ≈ 

 
∑  
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37. P(accepting the lot) = P(X1 = 0 or 1) + P(X1 = 2, X2 = 0, 1, 2, or 3) + P(X1 = 3, X2 = 0, 1, or 2)  

= P(X1 = 0 or 1) + P(X1 = 2)P(X2 = 0, 1, 2, or 3) + P(X1 = 3)P(X2 = 0, 1, or 2).   
p = .01: ( )( ) ( )( ).9106 .0756 .9984 .0122 .9862 .9981= + + =  

p = .05: ( )( ) ( )( ).2794 .2611 .7604 .2199 .5405 .5968= + + =  

p = .10: ( )( ) ( )( ).0338 .0779 .2503 .1386 .1117 .0688= + + =  
 
38. P(accepting the lot) = P(X1 = 0 or 1) + P(X1 = 2, X2 = 0 or 1) + P(X1 = 3, X2 = 0) [since c2 = r1 – 1 = 3] = 

P(X1 = 0 or 1) + P(X1 = 2)P(X2 = 0 or 1) + P(X1 = 3)P(X2 = 0) 

( ) ( ) ( )
1 1

50 48 1002

0 0

50 50 100
1 1 1

2
x xx x

x x
p p p p p p

x x
− −

= =

     
= − + − ⋅ −     

     
∑ ∑ ( ) ( )47 1003 050 100

1 1
3 0

p p p p   
= − ⋅ −   
   

. 

p = .02: ( )( ) ( )( ).7358 .1858 .4033 .0607 .1326 .8188= + + =  

p = .05: ( )( ) ( )( ).2794 .2611 .0371 .2199 .0059 .2904= + + =  

p = .10: ( )( ) ( )( ).0338 .0779 .0003 .1386 .0000 .0038= + + =  
 

39.  
a. ( ) ( ) ( )50 49 482AOQ ( ) [ 1 50 1 1225 1 ]pP A p p p p p p= = − + − + −  
 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

AOQ .010 .018 .024 .027 .027 .025 .022 .018 .014 .011 
 

b. p = .0447, AOQL = .0447P(A) = .0274 
 
c. ATI = 50P(A) + 2000(1 – P(A)) 
 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

ATI 77.3 202.1 418.6 679.9 945.1 1188.8 1393.6 1559.3 1686.1 1781.6 

 
 
40. ( ) ( )50 49AOQ ( ) [ 1 50 1 ]pP A p p p p= = − + − .  Exercise 32 gives P(A), so multiplying each entry in the 

second row by the corresponding entry in the first row gives AOQ: 
p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

AOQ .0091 .0147 .0167 .0160 .0140 .0114 .0089 .0066 .0048 .0034 

 
ATI = 50P(A) + 2000(1 – P(A)) 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

ATI 224.3 565.2 917.2 1219.0 1455.2 1629.5 1753.3 1838.7 1896.3 1934.1 

 

( ) ( )50 49AOQ ( ) [ 1 50 1 ] 0d d pP A p p p p
dp dp

 = = − + − =   gives the quadratic equation 

22499 48 1 0p p− − = , from which p = .0318, and .0318 ( ) .0167AOQL P A= ≈ . 
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Supplementary Exercises 
 
41. n = 6, k = 26, 10,980ixΣ = , 422.31x = , 402isΣ = , 15.4615s = , 1074irΣ = , 41.3077r =  

S chart: ( ) ( )23 15.4615 1 .952
15.4615 15.4615 14.9141 .55,30.37

.952
−

± = ± ≈  

R chart: ( )( )3 .848 41.31
41.31 41.31 41.44

2.536
± = ± , so LCL = 0, UCL = 82.75 

X chart based on s : ( )3 15.4615
422.31 402.42,442.20

.952 6
± =   

X chart based on r : ( )3 41.3077
422.31 402.36,442.26

2.536 6
± =  

 
 
42. A c chart is appropriate here. 92ixΣ = so 92 3.833

24
x = = , and  3 3.833 5.874x x± = ± , giving LCL = 0 and 

UCL = 9.7.  Because x22 = 10 > UCL, the process appears to have been out of control at the time that the 
22nd plate was obtained. 

 
43.  

i ix  si ri 

1 50.83 1.172 2.2 
2 50.10 .854 1.7 
3 50.30 1.136 2.1 
4 50.23 1.097 2.1 
5 50.33 .666 1.3 
6 51.20 .854 1.7 
7 50.17 .416 .8 
8 50.70 .964 1.8 
9 49.93 1.159 2.1 
10 49.97 .473 .9 
11 50.13 .698 .9 
12 49.33 .833 1.6 
13 50.23 .839 1.5 
14 50.33 .404 .8 
15 49.30 .265 .5 
16 49.90 .854 1.7 
17 50.40 .781 1.4 
18 49.37 .902 1.8 
19 49.87 .643 1.2 
20 50.00 .794 1.5 
21 50.80 2.931 5.6 
22 50.43 .971 1.9 
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19.706isΣ = , .8957s = , 1103.85ixΣ = , 50.175x = , 3 .886a = , from which an s chart has LCL = 0 and 

UCL = 
( ) ( )23 .8957 1 .886

.8957 2.3020
.886

−
+ = , and 21 2.931s UCL= > .  Since an assignable cause is 

assumed to have been identified we eliminate the 21st group.  Then 16.775isΣ = , .7998s = ,  50.145x = .  
The resulting UCL for an s chart is 2.0529, and 2.0529is <  for every remaining i. The x chart based on s  

has limits ( )3 .7988
50.145 48.58,51.71

.886 3
± = .  All ix  values are between these limits. 

 
 
44. .0608p = , n = 100, so ( ) ( )UCL 3 1 6.08 3 6.08 .9392np np p= + − = + = 6.08 + 7.17 = 13.25 and LCL = 

0.  All points are between these limits, as was the case for the p-chart.  The p-chart and np-chart will always 

give identical results since  ( ) ( )1 1
ˆ3 3i

p p p p
p p p

n n
− −

− < < +    iff 

( ) ( )ˆ3 1 3 1i inp np p np x np np p− − < = < + − . 
 
 
45. ( ) ( )( )4 16 3 4 76inΣ = + = , 32,729.4i in xΣ = , 430.65x = , 

( )
( )

2
2 1 27,380.16 5661.4 590.0279

1 76 20
i i

i

n s
s

n
Σ − −

= = =
Σ − −

, so s = 24.2905.  For variation:  when n = 3, 

( ) ( )23 24.2905 1 .886
UCL 24.2905 24.29 38.14 62.43

.886
−

= + = + = ; when n = 4, 

( ) ( )23 24.2905 1 .921
UCL 24.2905 24.29 30.82 55.11

.921
−

= + = + = .  For location:  when n = 3, 

430.65 47.49 383.16,478.14± = ; when n = 4, 430.65 39.56 391.09,470.21± = . 
 
 
46.  

a. Provided the ( )iE X µ=  for each i, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1

1

1

0

1 ... 1 1

1 ... 1 1

1 1 ... 1 1 1 1 1

11 1
1 1 1 1

t t
t t t

t t

t t i i t

i i t

t t

E W E X E X E Xα α α α α α µ

µ α α α α α α

µ α α α α µ α α α α α

αµ α α α µ
α α

−
−

−

∞ ∞
−

= =

= + − + + − + −

 = + − + + − + − 
  = + − + + − + − = − − − + −    

 
= − − ⋅ + − = − − − − 

∑ ∑      
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b.  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 12 2 2
1 1

2
2 2 12 2 1

1

2
2

2

1 ... 1

1 1 ... 1 1 ...      where ) (1

1
1

t
t t t

t t

t

V W V X V X V X

V X C C C
n

C
C n

α α α α α

σα α α

σ

αα

α

−
−

− −

= + − + + −

   = + − + + − ⋅ = + + + ⋅ = −  

−
= ⋅

−

    

which gives the desired expression. 
 
c. From Example 16.8, σ = .5 (or s  can be used instead).  Suppose that we use α = .6 (not specified in the 

problem).  Then   
0 0 40w µ= =  

( ) ( )1 1 0.6 .4 .6 40.20 .4 40 40.12w x µ= + = + =  

( ) ( )2 2 1.6 .4 .6 39.72 .4 40.12 39.88w x w= + = + =   

( ) ( )3 3 2.6 .4 .6 40.42 .4 39.88 40.20w x w= + = + =  
w4 = 40.07, w5 = 40.06, w6 = 39.88, w7 = 39.74, w8 = 40.14, w9 = 40.25, w10 = 40.00, w11 = 40.29,      
w12 = 40.36, w13 = 40.51, w14 = 40.19, w15 = 40.21, w16 = 40.29 
 

( )2

2
1

.6 1 1 .6 .25 .0225
2 .6 4

σ
 − − = ⋅ =

−
, 1 .1500σ = , 

( )4

2
2

.6 1 1 .6 .25 .0261
2 .6 4

σ
 − − = ⋅ =

−
, 2 .1616σ = , 

3 .1633σ = , 4 .1636σ = , 5 6 16.1637 ,...,σ σ σ= =  
 
Control limits are: 
 
For t = 1, ( )40 3 .1500 39.55,40.45± =  

For t = 2, ( )40 3 .1616 39.52,40.48± =  

For t = 3, ( )40 3 .1633 39.51,40.49± =    
These last limits are also the limits for t = 4, …, 16. 
 
Because w13 = 40.51 > 40.49 = UCL, an out-of-control signal is generated. 
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	The χ2 statistic is .0436 + … + .2231 = 29.6282.  With df = 9 – 1 = 8, our χ2 value of 29.6282 exceeds 26.12, so the P-value < .001 and we strongly reject H0.  There is significant evidence to suggest that the first significant digits deviate from Ben...
	5. The observed values, expected values, and corresponding χ2 terms are :
	χ2 = 1.069 + … + .265 = 6.612. With df = 10 – 1 = 9, 6.612 < 14.68 ( P-value > .10 (  we cannot reject H0.  There is no significant evidence that the data is not consistent with the previously determined proportions.
	6. Under the assumption that each medal pair has probability 1/9, the probabilities of the categories {match, one off, two off} are 3/9, 4/9, and 2/9, respectively. Let p1, p2, p3 denote the probabilities of these three categories, so the hypotheses a...
	The sample size is n = 216, so the expected counts are 72, 96, and 48, for a test statistic of = 0.6875. At df = 3 – 1 = 2, the P-value is much greater than .10 since 0.6875 is much less than 6.25.
	Therefore, we fail to reject H0. The data is consistent with the hypothesis that expert and consumer ratings are independent and equally likely to be Gold, Silver, or Bronze.
	7. We test  vs. Ha: at least one proportion ≠ .25, and df = 3.
	χ2 = 4.0345, and with 3 df, P-value > .10, so we fail to reject H0.  The data fails to indicate a seasonal relationship with incidence of violent crime.
	8.  versus Ha: at least one proportion is not a stated in H0.
	χ2 = 1.3893, df = 4 – 1 = 3 ( P-value > .10 and so H0 is not rejected.  The data does not indicate a relationship between patients’ admission date and birthday.
	9.
	a. Denoting the 5 intervals by [0, c1), [c1, c2), …, [c4, ), we wish c1 for which , so c1 = –ln(.8) = .2231.  Then , so c2 = –ln(.6) = .5108.  Similarly, c3 = –ln(.4) = .0163 and c4 = –ln(.2) = 1.6094. The resulting intervals are [0, .2231), [.2231, ....
	b. Each expected cell count is 40(.2) = 8, and the observed cell counts are 6, 8, 10, 7, and 9, so .  Because 1.25 <, even at level .10 H0 cannot be rejected; the data is quite consistent with the specified exponential distribution.
	10.
	a.
	This formula involves only one subtraction, and that’s at the end of the calculation, so it is analogous to the shortcut formula for s2.
	b. .  For the pigeon data, k = 8, n = 120, and , so  as before.
	11.
	a. The six intervals must be symmetric about 0, so denote the 4th, 5th and 6th intervals by [0, a), [a, b),    [b, ∞).  The constant a must be such that , which from Table A.3 gives a ≈ .43.   Similarly, Φ(b) = .8333 implies b ≈ .97, so the six interv...
	b. The six intervals are symmetric about the mean of .5.  From a, the fourth interval should extend from the mean to .43 standard deviations above the mean, i.e., from .5 to .5 + .43(.002), which gives         [.5, .50086).  Thus the third interval is...
	c. Each expected count is 45(1/6) = 7.5, and the observed counts are 13, 6, 6, 8, 7, and 5, so χ2 = 5.53.  With 5 df, the P-value > .10, so we would fail to reject H0 at any of the usual levels of significance.  There is no significant evidence to sug...
	Section 14.2

	This gives χ2 = 7.789. At df = 9 – 1 – 1 = 7, 7.789 < 12.01 ( P-value > .10 ( we fail to reject H0. The Poisson model does provide a good fit.
	18. , , , , and .  The estimated expected counts are then (multiply  by n = 83) 11.08, 19.07, 24.56, 18.25, and 10.04, from which χ2 = 1.67.  With df = 5 – 1 – 2 = 2, the resulting P-value is > .10 and the hypothesis of normality cannot be rejected.
	19. With A = 2n1 + n4 + n5, B = 2n2 + n4 + n6, and C = 2n3 + n5 + n6, the likelihood is proportional to .  Taking the natural log and equating both  and  to zero gives  and , whence .  Substituting this into the first equation gives , and then .  Thus...
	This gives χ2 = 29.1. At df = 6 – 1 – 2 = 3, this gives a P-value less than .001. Hence, we reject H0.
	20. The pattern of points in the plot appear to deviate from a straight line, a conclusion that is also supported by the small P-value (< .01) of the Ryan-Joiner test.  Therefore, it is implausible that this data came from a normal population.  In par...
	21. The Ryan-Joiner test P-value is larger than .10, so we conclude that the null hypothesis of normality cannot be rejected.  This data could reasonably have come from a normal population.  This means that it would be legitimate to use a one-sample t...
	22. Minitab performs the Ryan-Joiner test automatically, as seen in the accompanying plot. The Ryan-Joiner correlation test statistic is r = 0.964 with a P-value of 0.037. Thus, we reject the null hypothesis that the alcohol content distribution is no...
	23. Minitab gives r = .967, though the hand calculated value may be slightly different because when there are ties among the x(i)’s, Minitab uses the same yi for each x(i) in a group of tied values.  c10 = .9707, and c.05 = 9639, so .05 < P-value < .1...
	Section 14.3

	24. H0:  TV watching and physical fitness are independent of each other
	Ha:  the two variables are not independent
	df = (4 – 1)(2 – 1) = 3; with α = .05,
	Computed < 7.815 ( P-value > .05
	Fail to reject H0.  The data fail to indicate a significant association between daily TV viewing habits and physical fitness.
	25. The hypotheses are H0: there is no association between extent of binge drinking and age group vs.           Ha: there is an association between extent of binge drinking and age group. With the aid of software, the calculated test statistic value i...
	26. Let pi = the true incidence rate of salmonella for the ith type of chicken (i = 1, 2, 3). Then the hypotheses are H0: p1 = p2 = p3 vs. Ha: these three true rates are not all equal. To apply the chi-squared test, form a 3x2 table with salmonella co...
	With the aid of software, the calculated test statistic is χ2 = 4.174. All expected counts are much larger than 5, so we compare this value to a chi-squared distribution with df = (3 – 1)(2 – 1) = 2. From Table A.11, the P-value is > .10, so we fail t...
	27. With i = 1 identified with men and i = 2 identified with women, and j = 1, 2, 3 denoting the 3 categories L>R, L=R, L<R, we wish to test H0: p1j = p2j for j = 1, 2, 3 vs. Ha: p1j ≠ p2j for at least one j.  The estimated cell counts for men are 17....
	28. For the population of Cal Poly students, the hypotheses are H0: cell phone service provider and email service provider are independent, versus Ha: cell phone service provider and email service provider are not independent.
	The accompanying Minitab output shows that all expected counts are ≥ 5, so a chi-squared test is appropriate. The test statistic value is χ2 = 1.507 at df = (3–1)(3–1) = 4, with an associated P-value of .825.
	29.
	a. The null hypothesis is H0: p1j = p2j = p3j for j = 1, 2, 3, 4, where pij is the proportion of the ith population (natural scientists, social scientists, non-academics with graduate degrees) whose degree of spirituality falls into the jth category (...
	From the accompanying Minitab output, the test statistic value is χ2 = 213.212 with df = (3–1)(4–1) = 6, with an associated P-value of 0.000. Hence, we strongly reject H0. These three populations are not homogeneous with respect to their degree of spi...
	b. We’re now testing H0: p1j = p2j for j = 1, 2, 3, 4 under the same notation. The accompanying Minitab output shows χ2 = 3.091 with df = (2–1)(4–1) = 3 and an associated P-value of 0.378. Since this is larger than any reasonable significance level, w...
	30. H0: the design configurations are homogeneous with respect to type of failure vs. Ha:  the design configurations are not homogeneous with respect to type of failure.
	.  With 6 df, , so .025 < P-value < .05.  Since the P -value is < .05, we reject H0. (If a smaller significance level were chosen, a different conclusion would be reached.) Configuration appears to have an effect on type of failure.
	31.
	a. The accompanying table shows the proportions of male and female smokers in the sample who began smoking at the ages specified. (The male proportions were calculated by dividing the counts by the total of 96; for females, we divided by 93.) The patt...
	b. The hypotheses, in words, are H0: gender and age at first smoking are independent, versus Ha: gender and age at first smoking are associated. The accompanying Minitab output provides a test statistic value of χ2 = 14.462 at df = (2–1)(4–1) = 3, wit...
	32. Let pi = the true eclosion rate under the ith duration (i = 1 for 0 days, …, i = 7 for 15 days). We wish to test the hypotheses H0: p1 = … = p7 vs. Ha: these seven true rates are not all equal. To apply the chi-squared test, form a 2x7 table with ...
	The expected count for the bottom right cell is 10(47)/350 < 5, but all other expected counts are ≥ 5. So, we will proceed with the chi-squared test. With the aid of software, the calculated test statistic is χ2 = 7.996; at df = (7 – 1)(2 – 1) = 6, th...
	33. , but , so .  This formula is computationally efficient because there is only one subtraction to be performed, which can be done as the last step in the calculation.
	34. Under the null hypothesis, we compute estimated cell counts by
	This is a 3x3x3 situation, so there are 27 cells.  Only the total sample size, n, is fixed in advance of the experiment, so there are 26 freely determined cell counts.  We must estimate p..1, p..2, p..3, p.1., p.2., p.3., p1.., p2.., and p3.., but , s...
	In general, the degrees of freedom for independence in an IxJxK array equals
	(IJK – 1) – [(I – 1) + (J – 1) + (K – 1)] = IJK – (I+J+K) + 2.
	35. With pij denoting the common value of pij1, pij2, pij3, and pij4 under H0,  and , where  and .  With four different tables (one for each region), there are 4(9 – 1) = 32 freely determined cell counts.  Under H0, the nine parameters p11, …, p33 mus...
	36.
	a.
	.  Because , the P-value is greater than .10 and H0 is not rejected.
	b. Each observation count here is 10 times what it was in a, and the same is true of the estimated expected counts, so now χ2 = 6.806, and H0 is rejected.  With the much larger sample size, the departure from what is expected under H0, the independenc...
	c. The observed counts are .13n, .19n, .28n, .07n, .11n, .22n, whereas the estimated expected  .12n, .18n, .30n, .08n, .12n, .20n, yielding χ2 = .006806n.  H0 will be rejected at level .10 iff , i.e., iff , so the minimum n = 677.
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	3. We test H0: µ = 7.39 vs. Ha: µ ≠ 7.39, so a two tailed test is appropriate. The (xi – 7.39)’s are –.37, –.04,        –.05, –.22, –.11, .38, –.30, –.17, .06, –.44, .01, –.29, –.07, and –.25, from which the ranks of the three positive differences are...
	4. The appropriate test is H0: µ = 30 vs. Ha: µ < 30.  The (xi – 30)’s are 0.6, 0.1, –14.4, –3.3, –2.9, –4.6, 5, 0.8, 1.9, 23.2, –17.5, –6.8, –21.2, –5.1, 0.2. From these n = 15 values, s+ = 3 + 1 + 9 + 4 + 5 + 15 + 2 = 39. The lower-tailed P-value is...
	5. The data are paired, and we wish to test H0: µD = 0 vs. Ha: µD ≠ 0.
	s+ = 10 + 12 + … + 9 = 72, so the 2-tailed P-value is 2P0(S+ ≥ max{72, 12(13)/2 – 72}) = 2P0(S+ ≥ 72) < 2(.005) = .01. Therefore, H0 is rejected at level .05.
	6. The data in Ch. 9 Exercise 39 are paired, and we wish to test H0: µD = 0 vs. Ha: µD ≠ 0. Looking at the differences provided, the 11 positive values have a rank sum of s+ = 91 (the three negative values have ranks 1, 10, and 3, and the rank total w...
	7. The data are paired, and we wish to test H0: µD = .20 vs. Ha: µD > .20 where µD = µoutdoor – µindoor.  Because n = 33, we’ll use the large-sample test.
	From the table, s+ = 424, so . The upper-tailed    P-value is P(Z ≥ 2.56) = .0052 < .05, so we reject H0. There is statistically significant evidence that the true mean difference between outdoor and indoor concentrations exceeds .20 nanograms/m3.
	8. With μ = the true average alcohol content for port wine, our hypotheses are H0: μ = 18.5 vs. Ha: μ > 18.5. Using software, the sum of the ranks for the positive differences among the values (xi – 18.5) is s+ = 463. Using the large-sample approximat...
	= .0078
	Since .0078 < .01, we reject H0 at the .01 level and conclude that the true average alcohol content for port wine exceeds 18.5.
	9.
	When H0 is true, each of the above 24 rank sequences is equally likely, which yields the distribution of D:
	Then c = 0 yields α = 1/24 = .042 (too small) while c = 2 implies α = 1/24 + 3/24 = .167, and this is the closest we can come to achieving a .10 significance level.
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	10. Refer to Table A.14.
	a. With m = 5, n = 6, upper-tailed P-value = P0(W ≥ 41) = .026.
	b. With m = 5, n = 6, lower-tailed P-value = P0(W ≥ 5(5 + 6 + 1) – 22) = P0(W ≥ 38) > .041.
	c. With m = 5, n = 6, two-tailed P-value = 2P0(W ≥ max{45, 5(5 + 6 + 1) – 45}) = 2P0(W ≥ 45) < 2(.004) = .008.
	d. First, w = 4 + 7 + … + 24 = 182. Next, since m = n = 12 is “off the chart,” use the large-sample test:
	= 1.85, P-value = P(Z ≥ 1.85) = .0322.
	11. The ordered combined sample is 163(y), 179(y), 213(y), 225(y), 229(x), 245(x), 247(y), 250(x), 286(x), and 299(x), so w = 5 + 6 + 8 + 9 + 10 = 38.  With m = n = 5, Table A.14 gives P-value = P0(W ≥ 38), which is between .008 and .028. In particula...
	12. Identifying x with pine (corresponding to the smaller sample size) and y with oak, we wish to test                  H0: µ1 – µ2 = 0 vs. Ha: µ1 – µ2 ≠ 0.  The x ranks are 3 (for .73), 4 (for .98), 5 (for 1.20), 7 (for 1.33), 8 (for 1.40), and 10 (f...
	13. Identifying x with unpolluted region (m = 5) and y with polluted region (n = 7), we wish to test the hypotheses H0: µ1 – µ2 = 0 vs. Ha: µ1 – µ2 < 0. The x ranks are 1, 5, 4, 6, 9, so w = 25. In this particular order, the test is lower-tailed, so P...
	14. Let μ1 and μ2 denote the true average scores using these two methods. The competing hypotheses are        H0: μ1 – μ2 = 0 versus Ha: μ1 – μ2 ≠ 0. With m = n = 18, we’ll use the large-sample version of the rank-sum test. The sum of the ranks for th...
	This is a reasonably low P-value; in particular, we would reject H0 at the traditional .05 significance level. Thus, on the basis of the rank-sum test, we conclude the true average scores using these two methods are not the same.
	15. Let µ1 and µ2 denote true average cotanine levels in unexposed and exposed infants, respectively.  The hypotheses of interest are H0: µ1 – µ2 = –25 vs. H0: µ1 – µ2 < –25.   Before ranking, –25 is subtracted from each xi (i.e. 25 is added to each),...
	16.
	a.
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